Purpose – The purpose of this paper is to develop the method of generating assembly sequences, which can be used in the shipbuilding industry. The method must take into account the assumptions specific for assembly processes of large-size steel ship hulls, among others, a large number of connections, multi-stage and parallel assembly, set priority relations between connections. Design/methodology/approach – The assembly sequence is presented as a directed acyclic graph, whose vertices are mutually uniquely assigned to connections on a hull structure. The minimization of the number of unmet priority precedence of performing connections has been proposed as a criterion of optimization. The genetic algorithm has been proposed as a method to solve problems. Findings – The proposed method allows to model the acyclic assembly process of welded structures and find solutions minimizing the objective function even for very complex problems. Because of this, the method has a chance to be used in shipbuilding. Research limitations/implications – Mathematical formulation of priority assumptions is quite laborious. The possibility of partial automation of this process should be considered. Due to the complexity of the problem, a relatively simplified objective function has been proposed. In assembling a hull, additional criteria should be taken into account. It is the direction of further research. Practical implications – The method can be successfully used in shipbuilding and in planning the production of other steel welded structures, among others, tanks, components of bridges, offshore structures. Examples of calculations were performed on an actual structure of a hull fragment. Originality/value – A new way of coding the acyclic serial-parallel sequence was designed. The proposed method allows to analyse the sequence using the graph theory. Original, two-part crossover and mutation operators for assembling sequence were proposed.
Purpose – The purpose of this paper is to develop a risk assessment method for production processes of large-size steel ship hulls. Design/methodology/approach – This study uses a quantitative-probabilistic approach with involvement of clustering technique in order to analyse the database of accidents and predict the process risk. The case-based reasoning is used in here. A set of technological hazard classes as a basis for analysing the similarities between the production processes is proposed. The method has been explained using a case study on large-size shipyard. Findings – Statistical and clustering approach ensures effective risk managing in shipbuilding process designing. Results show that by selection of adequate number of clusters in the database, the quality of predictions can be controlled. Research limitations/implications – The suggested k-means method using the Euclidean distance measure is initial approach. Testing the other distance measures and consideration of fuzzy clustering method is desirable in the future. The analysis in the case study is simplified. The use of the method according to prediction of risk related to loss of health or life among people exposed to the hazards is presented. Practical implications – The risk index allows to compare the processes in terms of security, as well as provide significant information at the technology design stage of production task. Originality/value – There are no studies on quantitative methods developed specifically for managing risks in shipbuilding processes. Proposed list of technological hazard classes allows to utilize database of past processes accidents in risk prediction. The clustering method of analysing the database is agile thanks to the number of clusters parameter. The case study basing on actual data from the real shipyard constitutes additional value of the paper.
Purpose The purpose of the paper is to develop a method of automatic classification of the components of the assembly units. The method is crucial for developing an automatic ship assembly planning tools. The proposed method takes into account the assumptions specific for shipbuilding technology processes: high complexity of structures, difficult expert-based classification of components, fixed priority relations between connections resulting from geometrical constraints and demands of welding processes. Design/methodology/approach The set of ex post determined liaisons and assembly sequences constitutes the database of structures which have been made-up earlier. The components classification problem is solved using matrix coding of graphs. Information in such form is stored in the database. The minimization of number of cycles in the graph of classes sequence and minimization of diversity of classes within all constructions has been proposed as criteria of optimization. The genetic algorithm has been proposed as a solution method. Findings The proposed method solves the problem of components’ classifications. It allows setting the pattern of priorities between classes of various connections. This gives a chance to determine the relationship constraints between the connections of new structures for which assembly sequences are not established. Research limitations/implications Mathematical formulation of the database is quite laborious. The possibility of partial automation of this process should be considered. Owing to the complexity of the problem, a relatively simple objective function has been proposed. During a ship hull assembly, additional criteria should be taken into account, what will be the direction of further research. Practical implications Automatic classification of components is dedicated for implementation in shipyards and similar assembly systems. Tests performed by the authors confirm efficiency of presented method in supporting management of the database and assembly of new structures planning. Suggested activity-oriented approach allows for easy conversion of any assembly unit structure to the form of a matrix. Originality/value The new approach for components classification according to its assembly features distinguishes the proposed method from others. The use of nilpotent matrix theory in an acyclicity of graphs analysis is also a unique achievement. Original crossover and mutation operators for assembly sequence were proposed in the article.
The specificity of the yard work requires the particularly careful treatment of the issues of scheduling and budgeting in the production planning processes. The article presents the method of analysis of the assembly sequence taking into account the duration of individual activities and the demand for resources. A method of the critical path and resource budgeting were used. Modelling of the assembly was performed using the acyclic graphs. It has been shown that the assembly sequences can have very different feasible budget regions. The proposed model is applied to the assembly processes of large-scale welded structures, including the hulls of ships. The presented computational examples have a simulation character. They show the usefulness of the model and the possibility to use it in a variety of analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.