To optimize energy efficiency in network, operators try to switch off as many network devices as possible. Recently, there is a trend to introduce content caches as an inherent capacity of network equipment, with the objective of improving the efficiency of content distribution and reducing network congestion. In this work, we study the impact of using in-network caches and content delivery network (CDN) cooperation on an energy-efficient routing. We formulate this problem as Energy Efficient Content Distribution. The objective is to find a feasible routing, so that the total energy consumption of the network is minimized subject to satisfying all the demands and link capacity. We exhibit the range of parameters (size of caches, popularity of content, demand intensity, etc.) for which caches are useful. Experimental results show that by placing a cache on each backbone router to store the most popular content, along with well choosing the best content provider server for each demand to a CDN, we can save a total up to 23% of power in the backbone, while 16% can be gained solely thanks to caches.
International audienceIn this paper, we study a colouring problem motivated by a practical frequency assignment problem and, up to our best knowledge, new. In wireless networks, a node interferes with other nodes, the level of interference depending on numerous parameters: distance between the nodes, geographical topography, obstacles, etc. We model this with a weighted graph $(G,w)$ where the weight function $w$ on the edges of $G$ represents the noise (interference) between the two end-vertices. The total interference in a node is then the sum of all the noises of the nodes emitting on the same frequency. A weighted $t$-improper $k$-colouring of $(G,w)$ is a $k$-colouring of the nodes of $G$ (assignment of $k$ frequencies) such that the interference at each node does not exceed the threshold $t$. We consider here the Weighted Improper Colouring problem which consists in determining the weighted $t$-improper chromatic number defined as the minimum integer $k$ such that $(G,w)$ admits a weighted $t$-improper $k$-colouring. We also consider the dual problem, denoted the Threshold Improper Colouring problem, where, given a number $k$ of colours, we want to determine the minimum real $t$ such that $(G,w)$ admits a weighted $t$-improper $k$-colouring. We show that both problems are NP-hard and first present general upper bounds for both problems; in particular we show a generalisation of Lovász's Theorem for the weighted $t$-improper chromatic number. Motivated by the original application, we then study a special interference model on various grids (square, triangular, hexagonal) where a node produces a noise of intensity 1 for its neighbours and a noise of intensity 1/2 for the nodes at distance two. We derive the weighted $t$-improper chromatic number for all values of $t$
Abstract-To optimize energy efficiency in network, operators try to switch off as many network devices as possible. Recently, there is a trend to introduce content caches as an inherent capacity of network equipment, with the objective of improving the efficiency of content distribution and reducing network congestion. In this work, we study the impact of using in-network caches and content delivery network (CDN) cooperation on an energy-efficient routing. We formulate this problem as Energy Efficient Content Distribution. The objective is to find a feasible routing, so that the total energy consumption of the network is minimized subject to satisfying all the demands and link capacity. We exhibit the range of parameters (size of caches, popularity of content, demand intensity, etc.) for which caches are useful. Experimental results show that by placing a cache on each backbone router to store the most popular content, along with well choosing the best content provider server for each demand to a CDN, we can save a total up to 23% of power in the backbone, while 16% can be gained solely thanks to caches.
We study the problem of reducing power consumption in an Internet Service Provider (ISP) network by designing the content distribution infrastructure managed by the operator. We propose an algorithm to optimally decide where to cache the content inside the ISP network. We evaluate our solution over two case studies driven by operators feedback. Results show that the energy-efficient design of the content infrastructure brings substantial savings, both in terms of energy and in terms of bandwidth required at the peering point of the operator. Moreover, we study the impact of the content characteristics and the power consumption models. Finally, we derive some insights for the design of future energy-aware networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.