Biodiesels represent more carbon-neutral fuels and are introduced at an increasing extent to reduce emission of greenhouse gases. However, the potential impact of different types and blend concentrations of biodiesel on the toxicity of diesel engine emissions are still relatively scarce and to some extent contradictory. The objective of the present work was to compare the toxicity of diesel exhaust particles (DEP) from combustion of two 1st-generation fuels: 7% fatty acid methyl esters (FAME; B7) and 20% FAME (B20) and a 2nd-generation 20% FAME/HVO (synthetic hydrocarbon biofuel (SHB)) fuel. Our findings indicate that particulate emissions of each type of biodiesel fuel induce cytotoxic effects in BEAS-2B and A549 cells, manifested as cell death (apoptosis or necrosis), decreased protein concentrations, intracellular ROS production, as well as increased expression of antioxidant genes and genes coding for DNA damage-response proteins. The different biodiesel blend percentages and biodiesel feedstocks led to marked differences in chemical composition of the emitted DEP. The different DEPs also displayed statistically significant differences in cytotoxicity in A549 and BEAS-2B cells, but the magnitude of these variations was limited. Overall, it seems that increasing biodiesel blend concentrations from the current 7 to 20% FAME, or substituting 1st-generation FAME biodiesel with 2nd-generation HVO biodiesel (at least below 20% blends), affects the in vitro toxicity of the emitted DEP to some extent, but the biological significance of this may be moderate.Electronic supplementary materialThe online version of this article (doi:10.1007/s11356-017-9561-9) contains supplementary material, which is available to authorized users.
Nowadays more and more emphasis is placed on the protection of the natural environment. Scientists notice that global warming is associated with an increase of carbon dioxide emissions, which results inter alia from the combustion of gasoline, oil, and coal. To reduce the problem of pollution from transport, the EU is introducing increasingly stringent emission standards which should correspond to sustainable conditions of the environment during the operation of motor vehicles. The emissivity value of substances, such as nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), as well as solid particles, was determined. The aim of this paper was to examine, by means of simulation in the Scilab program, the exhaust emissions generated by the 1.3 MultiJet Fiat Panda diesel engine, and in particular, carbon monoxide and nitrogen oxides (verified on the basis of laboratory tests). The Fiat Panda passenger car was selected for the test. The fuels supplied to the tested engine were diesel and FAME (fatty acid methyl esters). The Scilab program, which simulated the diesel engine operation, was the tool for analyzing the exhaust toxicity test. The combustion of biodiesel does not necessarily mean a smaller amount of exhaust emissions, as could be concluded on the basis of information contained in the subject literature. The obtained results were compared with the currently valid EURO-6 standard, for which the limit value for CO is 0.5 g/km, and for NOx − 0.08 g/km, and it can be seen that the emission of carbon monoxide did not exceed the standards in any case examined. Unfortunately, when analyzing the total emissions of nitrogen oxides, the situation was completely the opposite and the emissions were exceeded by 20–30%.
Economic progress, development of transport, production of new cars, production of more and more energy, and the combustion of fossil fuels are causing huge changes that are currently occurring in the environment. Ecological problems of the contemporary economy combined with perspectives of resources exhaustion, as well as the need to follow sustainable rules of living, require the search for new fuels. Fuels which can assure their availability and good environmental performance are needed for maintaining sustainable transportation. Knowledge about the behavior of various fuels is necessary for realistic methods of technology management in transportation means and the fuel industry. This paper describes biofuels that can be an addition to petrol or can exist as standalone fuels. A simulation was carried out on an urban vehicle and the tested fuels were petrol 95, ethanol, methanol, and dimethyl ether. For the selected engine a simulation corresponding to that of the New European Driving Cycle (NEDC) test was created using the Scilab package. Based on this simulation, values of carbon dioxide and water vapor emission were determined. The fuel demand for each fuel mixture and the amount of air for the fuels used were also calculated (and verified on the basis of laboratory tests). It was demonstrated that addition of biofuel decreases emission of carbon dioxide, simultaneously increasing emission of water vapor. Biofuel additive also caused an increase in fuel consumption. Unfortunately, in the New European Driving Cycle test being investigated, carbon dioxide emissions in all cases exceeded the permissible level of 130 g CO2/km, which is bad news in the context of the further tightening of norms and standards. The simulation tests confirmed that when using the start/stop system and applying specific additives, the carbon dioxide emission decreases and the consumption of mixtures with the activated start/stop system is smaller. The analyzed problems and results of this analysis become more important in light of the Worldwide Harmonized Light Duty Vehicles Test Procedure (WLTP) standard, which became binding from September 2018 and applies to the sale of cars that had been approved prior (in accordance with the New European Driving Cycle standard). Although the NEDC standard appears obsolete the computer model simulating this type of test will be necessary in many cases. It is, however, needed and possible to develop a similar simulation procedure for WLTP tests.
The effects of initial pressure and temperature in a constant volume test chamber with a common rail injection system on the processes of self-ignition and combustion of rapeseed oil and various blends of rapeseed oil with diesel oil are explored. Based on the obtained pressure waveforms the amount of emitted heat was determined, and the tested fuels were compared. The variations of a number of physicochemical characteristics that occur during the combustion processes were evaluated for several mixtures of fuel components. It was found that in the case of blends of rapeseed oil with diesel oil, the best results were obtained for a mixture containing 70 weight percent of diesel oil and 30% of rapeseed oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.