Doppler spectroscopy of helium impurities in the Maryland Centrifugal Experiment reveals the simultaneous existence of isorotating and differentially rotating magnetic surfaces. Differential rotation occurs at the innermost surfaces and is conjectured to cause plasma voltage oscillations of hundreds of kilohertz by periodically changing the current path inductance. High-speed images show the periodic expulsion of plasma near the mirror ends at the same frequencies. In spite of this, the critical ionization velocity limit is exceeded, with respect to the vacuum field definition, for at least 0.5 ms.
Electron Bernstein wave electron temperature profile diagnostic (invited) Rev. Sci. Instrum. 72, 285 (2001); Thermal electron Bernstein emission has been observed at the second harmonic of the electron cyclotron frequency at the mid-plane of the Maryland Centrifugal eXperiment. The emission is received in the X-mode polarization and coupled to the Bernstein wave by the B-X mode conversion process. The average B-X coupling efficiency is approximately 20%. The observed emission indicates thermal electron temperatures an excess of 100 eV in the core of the rotating plasma. The measured electron temperature is consistent with recent ion temperature measurements and indicates that the total energy confinement time exceeds 500 ls. V C 2014 AIP Publishing LLC.
Velocity of hydrogen plasmas rotating due to imposed E × B fields at the Maryland Centrifugal Experiment (MCX) [R. F. Ellis, et al., Phys. Plasmas 12, 055704 (2005)], where E is the electric field in the radial direction and B the magnetic field in the axial direction of a cylindrical configuration, has traditionally been measured using Doppler shifts of atomic spectra from impurity elements such as carbon. Ideally, the gyrocenter of trace particles rotates at the bulk plasma velocity, regardless of the charged state or trace particle mass. However, for sufficiently large applied |E/B| (or equivalently, a sufficiently large ratio of bulk plasma rotation frequency and particle gyrofrequency), charged particles may have gyroradii that depart significantly from quasi-circular orbits drifting about the B field axis. This effect is investigated numerically with a single particle code that includes scattering, as well as experimentally at MCX. Numerical findings are compared to experimentally measured Doppler shifts of singly inonized helium and oxygen, and doubly ionized carbon atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.