Understanding the behavior of deep reinforcement learning (DRL) agents is crucial for improving their performance and reliability. However, the complexity of their policies often makes them challenging to understand. In this paper, we introduce a new approach for investigating the behavior modes of DRL policies, which involves utilizing dimensionality reduction and trajectory clustering in the latent space of neural networks. Specifically, we use Pairwise Controlled Manifold Approximation Projection (PaCMAP) for dimensionality reduction and TRACLUS for trajectory clustering to analyze the latent space of a DRL policy trained on the Mountain Car control task. Our methodology helps identify diverse behavior patterns and suboptimal choices by the policy, thus allowing for targeted improvements. We demonstrate how our approach, combined with domain knowledge, can enhance a policy's performance in specific regions of the state space.
This paper deals with robotic lever control using Explainable Deep Reinforcement Learning. First, we train a policy by using the Deep Deterministic Policy Gradient algorithm and the Hindsight Experience Replay technique, where the goal is to control a robotic manipulator to manipulate a lever. This enables us both to use continuous states and actions and to learn with sparse rewards. Being able to learn from sparse rewards is especially desirable for Deep Reinforcement Learning because designing a reward function for complex tasks such as this is challenging. We first train in the PyBullet simulator, which accelerates the training procedure, but is not accurate on this task compared to the real-world environment. After completing the training in PyBullet, we further train in the Gazebo simulator, which runs more slowly than PyBullet, but is more accurate on this task. We then transfer the policy to the real-world environment, where it achieves comparable performance to the simulated environments for most episodes. To explain the decisions of the policy we use the SHAP method to create an explanation model based on the episodes done in the real-world environment. This gives us some results that agree with intuition, and some that do not. We also question whether the independence assumption made when approximating the SHAP values influences the accuracy of these values for a system such as this, where there are some correlations between the states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.