BackgroundAs a result of the increased consumption of sugar-rich and fatty-products, and the increase in preference for such products, metabolic disorders are becoming more common at a younger age. Fructose is particularly used in prepared foods and carbonated beverages. We investigated the impact of regular consumption of fructose, in combination or not with fatty food, on the onset of metabolic syndrome and type 2 diabetes (T2D). We evaluated the metabolic, oxidative, and functional effects on the liver and blood vessels, both related to diabetes complications.MethodsHigh-fat diet (HFD), high-fructose beverages (HF) or both (HFHF) were compared to rats fed with normal diet (ND) for 8 months to induce T2D and its metabolic, oxidative, and functional complications. Metabolic control was determined by measuring body weight, fasting blood glucose, C-peptide, HOMA2-IR, leptin, and cholesterol; oxidative parameters were studied by lipid peroxidation and total antioxidant capacity in plasma and the use of ROS labelling on tissue. Histological analysis was performed on the liver and endothelial function was performed in main mesenteric artery using organ-baths.ResultsAfter 2 months, HFHF and HFD increased body weight, leptin, HOMA2-IR associated to steatosis, oxidative stress in plasma and tissues, whereas HF had only a transient increase of leptin and c-peptide. Only HFHF induced fasting hyperglycaemia after 6 months and persistent hyperinsulinaemia and fasting hyperglycaemia with complicated steatosis (inflammation and fibrosis) after 8 months. HFHF and HFD induced endothelial dysfunction at 8 months of diet.ConclusionsSix months, high fat and high carbohydrate induced T2D with widespread tissues effects. We demonstrated the role of oxidative stress in pathogenesis as well as in complications (hepatic and vascular), reinforcing interest in the use of antioxidants in the prevention and treatment of metabolic diseases, including T2D.
The pigments responsible for the yellow-orange coloration of apple juices have remained largely unknown up to now. Four French cider apple juices were produced in conditions similar to those used in the cider-making industry. The oxidized juices, characterized using the CIE L a b parameters, displayed various colors depending on the apple variety and native phenolic composition. HPLC-DAD-MS revealed contrasting pigment profiles related to oxidized tanning and nontanning molecules. The latter were divided into two groups according to their polarity and their visible spectra. With regard to phenolic classes, flavanol monomers and hydroxycinnamic acids played an essential role in the formation of oxidation products. Interestingly, dihydrochalcones appeared to include precursors of some yellow compounds. Indeed, the yellow pigment phloretin xyloglucoside oxidation product (PXGOPj), derived from phloretin xyloglucoside, was clearly identified in apple juices as a xyloglucose analogue of the yellow pigment phloridzin oxidation product (POPj), previously characterized in a model solution by Le Guernevé et al. (Tetrahedron Lett. 2004, 45 (35), 6673-6677).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.