BackgroundLignification of the fruit endocarp layer occurs in many angiosperms and plays a critical role in seed protection and dispersal. This process has been extensively studied with relationship to pod shatter or dehiscence in Arabidopsis. Dehiscence is controlled by a set of transcription factors that define the fruit tissue layers and whether or not they lignify. In contrast, relatively little is known about similar processes in other plants such as stone fruits which contain an extremely hard lignified endocarp or stone surrounding a single seed.ResultsHere we show that lignin deposition in peach initiates near the blossom end within the endocarp layer and proceeds in a distinct spatial-temporal pattern. Microarray studies using a developmental series from young fruits identified a sharp and transient induction of phenylpropanoid, lignin and flavonoid pathway genes concurrent with lignification and subsequent stone hardening. Quantitative polymerase chain reaction studies revealed that specific phenylpropanoid (phenylalanine ammonia-lyase and cinnamate 4-hydroxylase) and lignin (caffeoyl-CoA O-methyltransferase, peroxidase and laccase) pathway genes were induced in the endocarp layer over a 10 day time period, while two lignin genes (p-coumarate 3-hydroxylase and cinnamoyl CoA reductase) were co-regulated with flavonoid pathway genes (chalcone synthase, dihydroflavanol 4-reductase, leucoanthocyanidin dioxygen-ase and flavanone-3-hydrosylase) which were mesocarp and exocarp specific. Analysis of other fruit development expression studies revealed that flavonoid pathway induction is conserved in the related Rosaceae species apple while lignin pathway induction is not. The transcription factor expression of peach genes homologous to known endocarp determinant genes in Arabidopsis including SHATTERPROOF, SEEDSTCK and NAC SECONDARY WALL THICENING PROMOTING FACTOR 1 were found to be specifically expressed in the endocarp while the negative regulator FRUITFUL predominated in exocarp and mesocarp.ConclusionsCollectively, the data suggests, first, that the process of endocarp determination and differentiation in peach and Arabidopsis share common regulators and, secondly, reveals a previously unknown coordination of competing lignin and flavonoid biosynthetic pathways during early fruit development.
Plants show a high degree of developmental plasticity in response to external cues, including day length and environmental stress. Water scarcity in particular can interfere with photoperiodic flowering, resulting in the acceleration of the switch to reproductive growth in several species, a process called drought escape. However, other strategies are possible and drought stress can also delay flowering, albeit the underlying mechanisms have never been addressed at the molecular level. We investigated these interactions in rice, a short day species in which drought stress delays flowering. A protocol that allows the synchronization of drought with the floral transition was set up to profile the transcriptome of leaves subjected to stress under distinct photoperiods. We identified clusters of genes that responded to drought differently depending on day length. Exposure to drought stress under floral-inductive photoperiods strongly reduced transcription of EARLY HEADING DATE 1 (Ehd1), HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1), primary integrators of day length signals, providing a molecular connection between stress and the photoperiodic pathway. However, phenotypic and transcriptional analyses suggested that OsGIGANTEA (OsGI) does not integrate drought and photoperiodic signals as in Arabidopsis, highlighting molecular differences between long and short day model species.
Plants are often facing several stresses simultaneously. Understanding how they react and the way pathogens adapt to such combinational stresses is poorly documented. Here, we developed an experimental system mimicking field intermittent drought on rice followed by inoculation by the pathogenic fungus Magnaporthe oryzae. This experimental system triggers an enhancement of susceptibility that could be correlated with the dampening of several aspects of plant immunity, namely the oxidative burst and the transcription of several pathogenesis-related genes. Quite strikingly, the analysis of fungal transcription by RNASeq analysis under drought reveals that the fungus is greatly modifying its virulence program: genes coding for small secreted proteins were massively repressed in droughted plants compared to unstressed ones whereas genes coding for enzymes involved in degradation of cell-wall were induced. We also show that drought can lead to the partial breakdown of several major resistance genes by affecting R plant gene and/or pathogen effector expression. We propose a model where a yet unknown plant signal can trigger a change in the virulence program of the pathogen to adapt to a plant host that was affected by drought prior to infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.