In the cell nucleus, the 1,25-(OH)2 vitamin D3 (1,25-(OH)2D3) receptor (VDR) is localized in specialized microdomains enriched in sphingomyelin and cholesterol. The integrity of these microdomains is necessary for 1,25-(OH)2D3–induced differentiation of embryonic hippocampal cells. Serum deprivation alters nuclear microdomains, which lose the VDR.
Hormonal changes in humans during spaceflight have been demonstrated but the underlying mechanisms are still unknown. To clarify this point thyroid and testis/epididymis, both regulated by anterior pituitary gland, have been analyzed on long-term space-exposed male C57BL/10 mice, either wild type or pleiotrophin transgenic, overexpressing osteoblast stimulating factor-1. Glands were submitted to morphological and functional analysis.In thyroids, volumetric ratios between thyrocytes and colloid were measured. cAMP production in 10−7M and 10−8M thyrotropin-treated samples was studied. Thyrotropin receptor and caveolin-1 were quantitized by immunoblotting and localized by immunofluorescence. In space-exposed animals, both basal and thyrotropin-stimulated cAMP production were always higher. Also, the structure of thyroid follicles appeared more organized, while thyrotropin receptor and caveolin-1 were overexpressed. Unlike the control samples, in the space samples thyrotropin receptor and caveolin-1 were both observed at the intracellular junctions, suggesting their interaction in specific cell membrane microdomains.In testes, immunofluorescent reaction for 3β- steroid dehydrogenase was performed and the relative expressions of hormone receptors and interleukin-1β were quantified by RT-PCR. Epididymal sperm number was counted. In space-exposed animals, the presence of 3β and 17β steroid dehydrogenase was reduced. Also, the expression of androgen and follicle stimulating hormone receptors increased while lutenizing hormone receptor levels were not affected. The interleukin 1 β expression was upregulated. The tubular architecture was altered and the sperm cell number was significantly reduced in spaceflight mouse epididymis (approx. −90% vs. laboratory and ground controls), indicating that the space environment may lead to degenerative changes in seminiferous tubules.Space-induced changes of structure and function of thyroid and testis/epididymis could be responsible for variations of hormone levels in human during space missions. More research, hopefully a reflight of MDS, would be needed to establish whether the space environment acts directly on the peripheral glands or induces changes in the hypotalamus-pituitary-glandular axis.
The 24:0 sphingomyelin of nuclear lipid microdomains from normal cells shifts to 16:0 sphingomyelin in nuclear lipid microdomains from cancer cells. The narrower microdomains in the nucleus are associated with the changes to proteins involved in hepatocarcinogenesis.
Nuclear sphingomyelin is a key molecule for cell proliferation. This molecule is organized with cholesterol and proteins to form specific lipid microdomains bound to the inner nuclear membrane where RNA is synthesized. Here, we have reported the ability of the sphingomyelin present in the nuclear microdomain to bind DNA and regulate its synthesis, and to highlight its role in cell proliferation induced by partial hepatectomy. During G1/S transition of the cell cycle, sphingomyelin and DNA content is very high and it is strongly reduced after exogenous sphingomyelinase treatment. During the S-phase of the cell cycle, the stimulation of sphingomyelinase and inhibition of sphingomyelin–synthase are accompanied by the DNA synthesis start. To assess the specificity of the results, experiments were repeated with trifluoperazine, a drug known to affect the synthesis of lipids and DNA and to stimulate sphingomyelinase activity. The activity of sphingomyelinase is stimulated in the first hour after hepatectomy and sphingomyelin–DNA synthesis is strongly attenuated. It may be hypothesized that the nuclear microdomain represents a specific area of the inner nuclear membrane that acts as an active site of chromatin anchorage thanks to the stabilizing action of sphingomyelin. Thus, sphingomyelin metabolism in nuclear lipid microdomains is suggested to regulate cell proliferation.
The chromatin phospholipid fraction is enriched in sphingomyelin content which changes during cell maturation and proliferation. Recently, we have demonstrated that the sphingomyelin variations can be due to chromatin neutral sphingomyelinase and sphingomyelin-synthase activities which di¡er in pH and K m optima from those present in nuclear membranes. The sphingomyelin can be used also as a source of phosphorylcholine for phosphatidylcholine synthesis by reverse sphingomyelin-synthase. In the present work we have studied the possible existence of reverse sphingomyelin-synthase activity in nuclear membrane and chromatin. A very low activity was detected in the homogenate, cytosol and nuclear membrane (0.93 þ 0.14, 2.61 þ 0.33 and 0.87 þ 0.13 pmol/mg protein/min, respectively), whereas the activity present in chromatin was 37.09 þ 2.05 pmol/mg protein/min. The reverse sphingomyelinsynthase decreases the intranuclear diacylglycerol pool and increases the intranuclear ceramide pool, whereas sphingomyelinsynthase has an opposite e¡ect. The possible correlation between these enzymes is discussed. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.