Titanium dioxide (TiO2) nanoparticles are used in many applications. Due to their small size, easy body penetration and toxicological adverse effects have been suspected. Numerous studies have tried to characterize TiO2 translocation after oral, dermal or respiratory exposure. In this study, we focused on TiO2 nanoparticle biodistribution, clearance and toxicological effects after intravenous injection, considering TiO2 translocation in the blood occurs. Using ICP-OES, transmission electron microscopy, and histological methods, we found TiO2 accumulation in liver, lungs and spleen. We estimated TiO2 nanoparticles’ half life in the body to about 10 days. Clinical biomarkers were also quantified for 56 days to identify potential toxicological impact on lungs, blood, liver, spleen and kidneys. Results showed absence of toxicological effects after TiO2 intravenous injection at concentrations of 7.7 to 9.4 mg/kg.
Zebrafish (Danio rerio) is a widely used model for toxicological studies, in particular those related to investigations on endocrine disruption. The development and regulatory use of in vivo and in vitro tests based on this species can be enhanced by toxicokinetic modeling. For this reason, we propose a physiologically based toxicokinetic (PBTK) model for zebrafish describing the uptake and disposition of organic chemicals. The model is based on literature data on zebrafish, other cyprinidae and other fish families, new experimental physiological information (volumes, lipids and water contents) obtained from zebrafish, and chemical-specific parameters predicted by generic models. The relevance of available models predicting the latter parameters was evaluated with respect to gill uptake and partition coefficients in zebrafish. This evaluation benefited from the fact that the influence of confounding factors such as body weight and temperature on ventilation rate was included in our model. The predictions for six chemicals (65 data points) yielded by our PBTK model were compared to available toxicokinetics data for zebrafish and 88% of them were within a factor of 5 of the corresponding experimental values. Sensitivity analysis highlighted that the 1-octanol/water partition coefficient, the metabolism rate, and all the parameters that enable the prediction of assimilation efficiency and partitioning of chemicals need to be precisely determined in order to allow an effective toxicokinetic modeling.
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.