Security properties of cryptographic protocols are typically expressed as reachability or equivalence properties. Secrecy and authentication are examples of reachability properties, while privacy properties such as untraceability, vote secrecy, or anonymity are generally expressed as behavioral equivalence in a process algebra that models security protocols.
Our main contribution is to reduce the search space for attacks for reachability as well as equivalence properties. Specifically, we show that if there is an attack then there is one that is well-typed. Our result holds for a large class of typing systems, a family of equational theories that encompasses all standard primitives, and protocols without else branches. For many standard protocols, we deduce that it is sufficient to look for attacks that follow the format of the messages expected in an honest execution, therefore considerably reducing the search space.
Abstract-Privacy properties such as anonymity, unlinkability, or vote secrecy are typically expressed as equivalence properties.In this paper, we provide the first decidability result for trace equivalence of security protocols, for an unbounded number of sessions and unlimited fresh nonces. Our class encompasses most symmetric key protocols of the literature, in their tagged variant.
Privacy properties such as untraceability, vote secrecy, or anonymity are typically expressed as behavioural equivalence in a process algebra that models security protocols. In this paper, we study how to decide one particular relation, namely trace equivalence, for an unbounded number of sessions. Our first main contribution is to reduce the search space for attacks. Specifically, we show that if there is an attack then there is one that is well-typed. Our result holds for a large class of typing systems and a large class of determinate security protocols. Assuming finitely many nonces and keys, we can derive from this result that trace equivalence is decidable for an unbounded number of sessions for a class of tagged protocols, yielding one of the first decidability results for the unbounded case. As an intermediate result, we also provide a novel decision procedure in the case of a bounded number of sessions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.