Abstract:The development of the Internet of Things infrastructure requires the deployment of millions of heterogeneous sensors embedded in the environment. The powering of these sensors cannot be done with wired connections, and the use of batteries is often impracticable. Energy harvesting is the common proposed solution, and many devices have been developed for this purpose, using light, mechanical vibrations, and temperature differences as energetic sources. In this paper we present a novel energy-harvester device able to capture the kinetic energy from a fluid in motion and transform it in electrical energy. This device, named FLEHAP (FLuttering Energy Harvester for Autonomous Powering), is based on an aeroelastic effect, named fluttering, in which a totally passive airfoil shows large and regular self-sustained motions (limit cycle oscillations) even in extreme conditions (low Reynolds numbers), thanks to its peculiar mechanical configuration. This system shows, in some centimeter-sized configurations, an electrical conversion efficiency that exceeds 8% at low wind speed (3.5 m/s). By using a specialized electronic circuit, it is possible to store the electrical energy in a super capacitor, and so guarantee self-powering in such environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.