Pancreatic ductal adenocarcinoma (PDA) is a critical health issue in the field of cancer, with few therapeutic options. Evidence supports an implication of the intratumoral microenvironment (stroma) on PDA progression. However, its contribution to the role of neuroplastic changes within the pathophysiology and clinical course of PDA, through tumor recurrence and neuropathic pain, remains unknown, neglecting a putative, therapeutic window. Here, we report that the intratumoral microenvironment is a mediator of PDA-associated neural remodeling (PANR), and we highlight factors such as 'SLIT2' (an axon guidance molecule), which is expressed by cancer-associated fibroblasts (CAFs), that impact on neuroplastic changes in human PDA. We showed that 'CAF-secreted SLIT2' increases neurite outgrowth from dorsal root ganglia neurons as well as from Schwann cell migration/ proliferation by modulating N-cadherin/β-catenin signaling. Importantly, SLIT2/ROBO signaling inhibition disrupts this stromal/ neural connection. Finally, we revealed that SLIT2 expression and CAFs are correlated with neural remodeling within human and mouse PDA. All together, our data demonstrate the implication of CAFs, through the secretion of axon guidance molecule, in PANR. Furthermore, it provides rationale to investigate the disruption of the stromal/neural compartment connection with SLIT2/ROBO inhibitors for the treatment of pancreatic cancer recurrence and pain. Cell Death and Disease (2015) 6, e1592; doi:10.1038/cddis.2014.557; published online 15 January 2015Even after significant efforts from the scientific community in the past decade, pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal cancers with worrying predictions.1 Median survival stagnates around 5 months, together with a 5-year survival at 5%. For 5-20% of patients treated surgically, the 5-year survival reaches 20%, with a median survival of 16 months. Metastasis onset and high prevalence of local tumor recurrence after potential curative resection influence patient's survival. A recent study revealed that the overall survival of patients with tumor recurrence was 9.3, versus 26.3 months for patients without early relapse. 2,3 Although several causes are attributed to local recurrence, reports highlight intrapancreatic nerve invasion as a predictor for recurrence 4 by playing the role of a specific niche for scattered tumoral cells. In light of such epidemiologic data, there is a crucial need to develop optimal therapeutic strategies, taking into account the tumoral cellular composition, over the next decade.
Alzheimer disease (AD) represents a major medical problem where mono-therapeutic interventions demonstrated only a limited efficacy so far. We explored the possibility of developing a combinational therapy that might prevent the degradation of neuronal and endothelial structures in this disease. We argued that the distorted balance between excitatory (glutamate) and inhibitory (GABA/glycine) systems constitutes a therapeutic target for such intervention. We found that a combination of two approved drugs – acamprosate and baclofen – synergistically protected neurons and endothelial structures in vitro against amyloid-beta (Aβ) oligomers. The neuroprotective effects of these drugs were mediated by modulation of targets in GABA/glycinergic and glutamatergic pathways. In vivo, the combination alleviated cognitive deficits in the acute Aβ25–35 peptide injection model and in the mouse mutant APP transgenic model. Several patterns altered in AD were also synergistically normalised. Our results open up the possibility for a promising therapeutic approach for AD by combining repurposed drugs.
Alzheimer disease (AD) affects mainly people over the age of 65 years, suffering from different clinical symptoms such as progressive decline in memory, thinking, language, and learning capacity. The toxic role of β-amyloid peptide (Aβ) has now shifted from insoluble Aβ fibrils to smaller, soluble oligomeric Aβ aggregates. The urgent need for efficient new therapies is high; robust models dissecting the physiopathological aspects of the disease are needed. We present here a model allowing study of four cytopathic effects of Aβ oligomers (AβO): oxidative stress, loss of synapses, disorganization of the neurite network, and cellular death. By generating a solution of AβO and playing on the concentration of and time of exposure to AβO, we have shown that it was possible to reproduce early effects (oxidative stress) and the long-term development of structural alterations (death of neurons). We have shown that 1) all toxic events were linked to AβO according to a specific timing and pathway and 2) AβO were probably the key intermediates in AD pathogenesis. The present model, using Aβ peptide solution containing AβO, reproduced essential neuropathological features of AD; the effects involved were similar whatever the kind of neurons tested (cortical vs. hippocampal). By using a single system, it was possible to embrace all toxic mechanisms at defined times and concentrations, to study each involved pathway, and to study the effects of new molecules on the different neurotoxic pathways responsible for development of AD.
A growing body of data has shown that recurrent epileptic seizures may be caused by an excessive release of the excitatory neurotransmitter glutamate in the brain. Glutamatergic overstimulation results in massive neuronal influxes of calcium and sodium through N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainic acid glutamate subtype receptors and also through voltage-gated calcium and sodium channels. These persistent and abnormal sodium and calcium entry points have deleterious consequences (neurotoxicity) for neuronal function. The therapeutic value of an antiepileptic drug would include not only control of seizure activity but also protection of neuronal tissue. The present study examines the in vitro neuroprotective effects of stiripentol, an antiepileptic compound with γ-aminobutyric acidergic properties, on neuronal-astroglial cultures from rat cerebral cortex exposed to oxygen-glucose deprivation (OGD) or to glutamate (40 µM for 20 min), two in vitro models of brain injury. In addition, the affinity of stiripentol for the different glutamate receptor subtypes and the interaction with the cell influx of Na(+) and of Ca(2+) enhanced by veratridine and NMDA, respectively, are assessed. Stiripentol (10-100 µM) included in the culture medium during OGD or with glutamate significantly increased the number of surviving neurons relative to controls. Stiripentol displayed no binding affinity for different subtypes of glutamate receptors (IC50 >100 µM) but significantly blocked the entry of Na(+) and Ca(2+) activated by veratridine and NMDA, respectively. These results suggest that Na(+) and Ca(2+) channels could contribute to the neuroprotective properties of sitiripentol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.