Disruption in cholesterol metabolism, particularly hypercholesterolemia, is a significant cause of atherosclerotic cardiovascular disease. Large interindividual variations in plasma cholesterol levels are traditionally related to genetic factors, and the remaining portion of their variance is accredited to environmental factors. In recent years, the essential role played by intestinal microbiota in human health and diseases has emerged. The gut microbiota is currently viewed as a fundamental regulator of host metabolism and of innate and adaptive immunity. Its bacterial composition but also the synthesis of multiple molecules resulting from bacterial metabolism vary according to diet, antibiotics, drugs used, and exposure to pollutants and infectious agents. Microbiota modifications induced by recent changes in the human environment thus seem to be a major factor in the current epidemic of metabolic/inflammatory diseases (diabetes mellitus, liver diseases, inflammatory bowel disease, obesity, and dyslipidemia). Epidemiological and preclinical studies report associations between bacterial communities and cholesterolemia. However, such an association remains poorly investigated and characterized. The objectives of this review are to present the current knowledge on and potential mechanisms underlying the host-microbiota dialogue for a better understanding of the contribution of microbial communities to the regulation of cholesterol homeostasis.
High-throughput phylogenetic 16S rRNA gene analysis has permitted to thoroughly delve into microbial community complexity and to understand host-microbiota interactions in health and disease. The analysis comprises sample collection and storage, genomic DNA extraction, 16S rRNA gene amplification, high-throughput amplicon sequencing and bioinformatic analysis. Low biomass microbiota samples (e.g. biopsies, tissue swabs and lavages) are receiving increasing attention, but optimal standardization for analysis of low biomass samples has yet to be developed. Here we tested the lower bacterial concentration required to perform 16S rRNA gene analysis using three different DNA extraction protocols, three different mechanical lysing series and two different PCR protocols. A mock microbiota community standard and low biomass samples (108, 107, 106, 105 and 104 microbes) from two healthy donor stools were employed to assess optimal sample processing for 16S rRNA gene analysis using paired-end Illumina MiSeq technology. Three DNA extraction protocols tested in our study performed similar with regards to representing microbiota composition, but extraction yield was better for silica columns compared to bead absorption and chemical precipitation. Furthermore, increasing mechanical lysing time and repetition did ameliorate the representation of bacterial composition. The most influential factor enabling appropriate representation of microbiota composition remains sample biomass. Indeed, bacterial densities below 106 cells resulted in loss of sample identity based on cluster analysis for all tested protocols. Finally, we excluded DNA extraction bias using a genomic DNA standard, which revealed that a semi-nested PCR protocol represented microbiota composition better than classical PCR. Based on our results, starting material concentration is an important limiting factor, highlighting the need to adapt protocols for dealing with low biomass samples. Our study suggests that the use of prolonged mechanical lysing, silica membrane DNA isolation and a semi-nested PCR protocol improve the analysis of low biomass samples. Using the improved protocol we report a lower limit of 106 bacteria per sample for robust and reproducible microbiota analysis.
Background Interest for the study of gut mycobiota in relation with human health and immune homeostasis has increased in the last years. From this perspective, new tools to study the immune/fungal interface are warranted. Systemic humoral immune responses could reflect the dynamic relationships between gut mycobiota and immunity. Using a novel flow cytometry technology (Fungi-Flow) to determine immunoglobulin (Ig) responses to fungi, we studied the relationships between gut mycobiota and systemic humoral anti-commensal immunity. Results The Fungi-Flow method allows a sensitive and specific measurement of systemic IgG responses against 17 commensal and environmental fungi from the two main divisions; Ascomycota and Basidiomycota. IgG responses exhibited a high inter-individual variability. Anti-commensal IgG responses were contrasted with the relative abundance, alpha-diversity, and intra-genus richness of fungal species in gut mycobiota of twenty healthy donors. Categorization of gut mycobiota composition revealed two differentiated fungal ecosystems. Significant difference of anti-Saccharomyces systemic IgG responses were observed in healthy donors stratified according to the fungal ecosystem colonizing their gut. A positive and significant correlation was observed between the variety of IgG responses against fungal commensals and intestinal alpha-diversity. At the level of intra-genus species richness, intense IgG responses were associated with a low intra-genus richness for known pathobionts, but not commensals. Conclusions Fungi-Flow allows an easy and reliable measure of personalized humoral responses against commensal fungi. Combining sequencing technology with our novel Fungi-Flow immunological method, we propose that there are at least two defined ecosystems in the human gut mycobiome associated with systemic humoral responses. Fungi-Flow opens new opportunities to improve our knowledge about the impact of mycobiota in humoral anti-commensal immunity and homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.