This letter focuses on the fabrication and characterization of a terahertz detector integrated with a group of low pass filters and resonant antennas. The detector operates as a self-mixer on GaN/AlGaN high electron mobility transistor (HEMT). At room temperature, a strong dc photocurrent is produced with the aid of the antennas and filters. The responsivity of our HEMT device is estimated to be 53 mA/W and a noise equivalent power of 1 nW/Hz can be achieved at 300 K. In addition, the sensor properties of a similar HEMT detector without filter are tested as a comparison.
Capacitive pressure (i.e., piezo-capacitive) sensors have manifested their superiority as a potential electronic skin. The mechanism of the traditional piezo-capacitive sensors is mainly to change the relative permittivity of the flexible composites by compressing the specially fabricated microstructures in the polymer matrix under pressure. Instead, we study the piezo-capacitive effect for a newly reported isotropic flexible composite consisting of silicone rubber (SR) and uniformly dispersed micron-sized conductive nickel particles experimentally and theoretically. The Young’s modulus of the nickel-SR composites (NSRCs) is designed to meet that of human skin. Experimental results show that the NSRCs exhibit remarkable particle concentration dependent capacitance response under uniaxial pressure, and the NSRCs present a good repeatability. We propose a mathematical model at particle level to provide deep insights into the piezo-capacitive mechanism, by considering the adjacent particles in the axial direction as micro capacitors connected in series and in parallel on the horizontal plane. The piezo-capacitive effect is determined by the relative permittivity induced by the particles rearrangement, longitudinal interparticle gap, and deflection angle of micro particle capacitors under pressure. Specifically, the relative capacitance of NSRC capacitor is deduced to be product of two factors: the degree of particle rearrangement, and the relative capacitance of a micro capacitor with the average longitudinal gap. The proposed model well matches and interprets the experimental results.
We design and fabricate two terahertz (THz) filters based on frequency selective surfaces' structures (FSSs) on single crystal sapphire substrate, which show high and low transmissivities to THz electromagnetic waves, respectively. The difference of THz transmissivity between two filters reaches up to 72% at the resonance frequency of 1.35 THz. The THz filtering effect is due to the resonant coupling between THz wave and periodic metallic elements and the filter operating frequency can be tuned systematically by the geometry of FSSs. The good agreement between experiments and finite difference time domain simulation indicates that a high-speed THz switch could be realized for THz active devices based on the FSSs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.