An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k ≥ 1, let g(k) be the smallest integer such that every planar point set in general position with at least g(k) interior points has a convex subset of points with exactly k interior points of P . In this article, we prove that g(3) = 9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.