A new route to the synthesis of TS-1 has been developed using (NH4)2CO3 as a crystallization-mediating agent. In this way, the framework Ti content can be significantly increased without forming extraframework Ti species. The prepared catalyst had a Si/Ti ratio as low as 34 in contrast to the ratio of 58 achieved with the methods A and B established by the Enichem group (Clerici, M. G.; Bellussi, G.; Romano, U. J. Catal. 1991, 129, 159) and Thangaraj and Sivasanker (Thangaraj, A.; Sivasanker, S. J. Chem. Soc., Chem. Commun. 1992, 123), respectively. The material contained less defect sites than the samples synthesized by the other two methods. As a result, it showed much higher activity for the oxidation of various organic substrates, such as linear alkanes/alkenes and alcohols, styrene, and benzene. The crystallization mechanism of TS-1 in the presence of (NH4)2CO3 was studied by following the whole crystallization process with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetry/differential thermal analysis (TG/DTA), inductively coupled plasma atomic emission spectrometry (ICP), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance UV-vis spectroscopy, and (29)Si MAS (magic-angle spinning) NMR spectroscopy techniques. It was shown that the presence of (NH4)2CO3 not only drastically lowered down pH, slowing down the crystallization process and making the incorporation of Ti into the framework match well with nucleation and crystal growth, but also modified the crystallization mechanism. It seems that the solid-phase transformation mechanism predominated in the crystallization process initiated by dissociation, reorganization, and recoalescence of the solidified gel although a small amount of nongelatinated Ti shifted to the solid during the crystal growth period. In contrast, a typical homogeneous nucleation mechanism occurred in the method A system. Thus, although in the method A system most of Ti cations was inserted into the lattice after the crystallization was nearly completed, the inclusion of Ti started at the earlier nucleation period in the presence of (NH4)2CO3. This is favorable for the incorporation of Ti into the framework, resulting in a more homogeneous distribution of Ti in the framework. Oxidation of 1-hexene and 2-hexanol over the samples collected during the whole crystallization process indicated that condensation of Ti-OH and Si-OH proceeded even after the crystallization was completed. This resulted in an increase in hydrophobicity and an overall improvement in microscopic character of Ti species and consequently a great increase in the catalytic activity with further progress of crystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.