Lifetime data is often right-censored. Recent literature on the Gini index estimation with censored data focuses on independent censoring. However, the censoring mechanism is likely to be dependent censoring in practice. This paper proposes two estimators of the Gini index under independent censoring and covariate-dependent censoring, respectively. The proposed estimators are consistent and asymptotically normal. We also evaluate the performance of our estimators in finite samples through Monte Carlo simulations. Finally, the proposed methods are applied to real data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.