BackgroundSoybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding.ResultsTo understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits.ConclusionsThis study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1289-9) contains supplementary material, which is available to authorized users.
The time to flowering and maturity are ecologically and agronomically important traits for soybean landrace and cultivar adaptation. As a typical short-day crop, long day conditions in the high-latitude regions require soybean cultivars with photoperiod insensitivity that can mature before frost. Although the molecular basis of four major E loci (E1 to E4) have been deciphered, it is not quite clear whether, or to what degree, genetic variation and the expression level of the four E genes are associated with the time to flowering and maturity of soybean cultivars. In this study, we genotyped 180 cultivars at E1 to E4 genes, meanwhile, the time to flowering and maturity of those cultivars were investigated at six geographic locations in China from 2011 to 2012 and further confirmed in 2013. The percentages of recessive alleles at E1, E2, E3 and E4 loci were 38.34%, 84.45%, 36.33%, and 7.20%, respectively. Statistical analysis showed that allelic variations at each of four loci had a significant effect on flowering time as well as maturity. We classified the 180 cultivars into eight genotypic groups based on allelic variations of the four major E loci. The genetic group of e1-nf representing dysfunctional alleles at the E1 locus flowered earliest in all the geographic locations. In contrast, cultivars in the E1E2E3E4 group originated from the southern areas flowered very late or did not flower before frost at high latitude locations. The transcriptional abundance of functional E1 gene was significantly associated with flowering time. However, the ranges of time to flowering and maturity were quite large within some genotypic groups, implying the presence of some other unknown genetic factors that are involved in control of flowering time or maturity. Known genes (e.g. E3 and E4) and other unknown factors may function, at least partially, through regulation of the expression of the E1 gene.
The maturity date of soybean (Glycine max (L.) Merr.) is sensitive to photoperiod, which varies with latitude and growing seasons. The maturity group (MG) system, composed of 13 MGs, is a major approach in characterizing varieties’ ecological properties and adaptable areas. A total of 512 world soybean varieties, including 48 MG checks, were tested at a major site (Nanjing, 32.04°N) with portions tested in supplementary sites (Heihe, 50.22°N; Mudanjiang, 44.60°N; Jining, 35.38°N and Nanning, 22.84°N) in China to explore the world-wide MG distribution. The maturity date of the world soybean varied greatly (75–201 d) in Nanjing. Along with soybeans disseminated to new areas, the MGs further expanded during the last 70 years from MG I–VII to the early MG 0–000 in the north continents and to the late MG VIII–X in the south continents with the growth period structure differentiated into two subgroups in each MG 0–VIII except V. The cluster analysis among MGs and subgroups using genome-wide markers validated the MG sequential emergence order and the subgroup differentiation in eight MGs. For future evaluation, in addition to one major site (Nanjing), one supplementary southern site (Nanning) and one supplementary northern site (Heihe) are sufficient.
Northeast China (NEC) is a major soybean [Glycine max (L.) Merr.] production region in China, where the germplasm of American soybeans are mainly from. The main stem node number (MSN) is a trait related to plant type and yield potential. With the soybeans expanded to higher latitudes in NEC, earlier maturity groups (MG 0, MG 00, and MG 000) formed based on MG I + MG II (MG I+II), and correspondingly the MSN decreased. To explore the MSN quantitative trait locus (QTL)-allele constitution, 306 accessions from NEC were studied using the restricted two-stage multilocus genome-wide association study (RTM-GWAS) procedure. In total, 76 MSN QTLs and 183 alleles were identified, with their genetic contribution about 0.04-9.83% per locus for a total of 65.63% for all loci. With the MSN reduction from MG I+II to MG 0, MG 00, and MG 000 (17.89 to 13.11), the changed alleles accounted for 28.42% of all alleles (6.56% for new allele emergence plus 21.86% for old allele exclusion), whereas the major part of the alleles were those inherited from MG I+II (71.58%).Thus in the evolution of MSN in the NEC soybean population, inheritance is the first genetic motivation, exclusion and selection (positive allele exclusion, 65.00%) is the second, emergence and mutation (negative allele emergence, 95.67%) is the third, and recombination among retained alleles is the fourth. A potential of 2-5 MSN improvement keeping the MG earliness was predicted, and 49 candidate genes were identified.Abbreviations: GWAS, genome-wide association study; MG, maturity group; MSN, main stem node number; NCSP, Northeast China soybean population; NEC, Northeast China; PV, phenotypic variance; QEI, quantitative trait locus × environment interaction; QTL, quantitative trait locus; RIL, recombinant inbred line; RTM, restricted two-stage multilocus; SNP, single nucleotide polymorphism; SNPLDB, single nucleotide polymorphism linkage disequilibrium block.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.