A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.
Plasmonic color filtering and color printing have attracted considerable attention in recent years due to their supreme performance in display and imaging technologies. Although various color‐related devices are designed, so far very few studies have touched the topic of dynamic color generation. In this article, dynamic color generation is demonstrated by integrating plasmonic nanostructures with vanadium dioxide based on its tunable optical properties through insulator–metal transition. Periodic arrays of silver nanodisks on a vanadium dioxide film are fabricated to realize different colors, relying on the excitation of localized and propagating surface plasmons, and Wood's anomaly. By tuning spatial periodicity of the arrays and diameter of the silver nanodisks, various colors can be achieved across the entire visible spectrum. Further, using insulator–metal transition of vanadium dioxide, the colors can be actively tuned by varying temperature. The approach of dynamic color generation based on the phase transition of vanadium dioxide can easily realize diverse color patterns, which makes it beneficial for display and imaging technology with distinct advantages of multifunctionality, flexibility, and high efficiency.
From first-principles computations we reveal that metallic gratings consisting of narrow slits may become transparent for extremely broad bandwidths under oblique incidence. This phenomenon can be explained by a concrete picture in which the incident wave drives free electrons on the conducting surfaces and part of the slit walls to form spoof surface plasmons (SSPs). The SSPs then propagate on the slit walls but are abruptly discontinued by the bottom edges to form oscillating charges that emit the transmitted wave. This picture explicitly demonstrates the conversion between light and SSPs and indicates clear guidelines for enhancing SSP excitation and propagation. Making structured metals transparent may lead to a variety of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.