Chitinases play an important role in many industrial processes, including the preparation of oligosaccharides with potential applications. In the present study, a 1,713 bp gene of Chi1602, derived from a marine bacterium Microbulbifer sp. BN3, encoding a GH18 family chitinase, was expressed at high levels in Pichia pastoris. Distinct from most of the marine chitinases, the recombinant chitinase 1602 exhibited maximal activity at 60 °C and over a broad pH range between 5.0 and 9.0, and was stable at 50 °C and over the pH range 4.0–9.0. The hydrolytic products derived from colloidal chitins comprised mainly (GlcNAc)2 and GlcNAc, indicating that rChi1602 is a GH18 processive chitinase in conformity with its hypothetical structure. However, rChi1602 showed traces of β‐N‐acetylglucosaminidase activity on substrates such as powder chitin, chitosan, and ethylene glycol chitin. The thermophilic rChi1602, which manifests adaptation to a wide pH range and can be expressed at a high level in P. pastoris, is advantageous for applications in industrial processes.
Agarases catalyze the hydrolysis of agarose to oligosaccharides which display an array of biological and physiological functions with important industrial applications in health-related fields. In this study, the gene encoding agarase (Aga-ms-R) was cloned from Microbulbifer sp. BN3 strain. Sequence alignment indicated that Aga-ms-R belongs to the GH16 family and contains one active domain and two carbohydrate binding module (CBM) domains. The mature Aga-ms-R was expressed successfully by employing the Brevibacillus system. Purified rAga-ms-R was obtained with a specific activity of 100.75 U/mg. rAga-ms-R showed optimal activity at 50 °C and pH 7.0, and the enzyme activity was stable at 50 °C and also over the pH range of 5.0–9.0. After exposure of rAga-ms-R to 70 °C for 30 min, only partial enzyme activity remained. Thin layer chromatographic analysis of the enzymatic hydrolysate of agar obtained using rAga-ms-R disclosed that the hydrolysate comprised, in a long intermediate-stage of the hydrolysis reaction, mainly neoagarotetraose (NA4) and neoagarohexaose (NA6) but ultimately, predominantly neoagarotetraose and trace amounts of neoagarobiose (NA2). Hydrolysates of the raw red seaweeds Gracilaria sjoestedtii and Gelidium amansii, produced by incubation with rAga-ms-R, were mainly composed of neoagarotetraose. The results demonstrate the high efficiency of rAga-ms-R in producing neoagaraoligosaccharide under low-cost conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.