The evolution of mass spectrometry (MS) and analytical techniques has led to the demand for proteome analysis with high proteome coverage in single-shot measurements. Focus has been placed on data-independent acquisition (DIA)-MS and ion mobility spectrometry as techniques for deep proteome analysis. We aimed to expand the proteome coverage by single-shot measurements using optimizing high-field asymmetric waveform ion mobility spectrometry parameters in DIA-MS. With our established proteome analysis system, more than 10,000 protein groups were identified from HEK293 cell digests within 120 min of MS measurement time. Additionally, we applied our approach to the analysis of host proteins in mouse feces and detected as many as 892 host protein groups (771 upregulated/121 downregulated proteins) in a mouse model of repeated social defeat stress (R-SDS) used in studying depression. Interestingly, 285 proteins elevated by R-SDS were related to mental disorders. The fecal host protein profiling by deep proteome analysis may help us understand mental illness pathologies noninvasively. Thus, our approach will be helpful for an in-depth comparison of protein expression levels for biological and medical research because it enables the analysis of highly proteome coverage in a single-shot measurement.
Proteomics has become an increasingly important tool in medical and medicinal applications. It is necessary to improve the analytical throughput for these applications, particularly in large-scale drug screening to enable measurement of a large number of samples. In this study, we aimed to establish an ultrafast proteomic method based on 5-min gradient LC and quadrupole-Orbitrap mass spectrometer (Q-Orbitrap MS). We precisely optimized data-independent acquisition (DIA) parameters for 5-min gradient LC and reached a depth of >5000 and 4200 proteins from 1000 and 31.25 ng of HEK293T cell digest in a single-shot run, respectively. The throughput of our method enabled the measurement of approximately 80 samples/day, including sample loading, column equilibration, and wash running time. We demonstrated that our method is applicable for the screening of chemical responsivity via a cell stimulation assay. These data show that our method enables the capture of biological alterations in proteomic profiles with high sensitivity, suggesting the possibility of large-scale screening of chemical responsivity.
Agrivoltaic systems, comprising photovoltaic panels placed over agricultural crops, have recently gained increasing attention. Emerging interest in these systems led us to investigate their influence on rice crops. Various factors affecting rice crop yield, including fertilizer application, temperature, and solar radiation, were directly observed, and measured to evaluate changes associated with the shading rates of photovoltaic systems installed above rice crops. The results suggest that the allowable upper limit of the shading rate for agrivoltaic installations ranges from 27 to 39%, which sustains at least 80% of the rice yield, a condition set by the Japanese Ministry of Agriculture, Forestry and Fisheries for these systems. If such systems are applied to rice paddies in Japan at 28% density, they could generate 284 million MWh/yr. This is equivalent to approximately 29% of the total Japanese electricity demand, based on 2018 calculations. This projection indicates the potential of agrivoltaic systems for efficient land use and sustainable energy generation.
A conditioned medium of a cell culture is widely used for various biological applications and frequently analyzed to characterize the functional proteins responsible for observed biological functions. However, a large number of abundant proteins in fetal bovine serum (FBS), usually included in the conditioned medium of a mammalian cell culture medium, hampers in-depth proteomic analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS). For a deep proteomic analysis of a conditioned medium by LC-MS/MS, we developed a simple albumin depletion approach coupled with data-independent acquisition (DIA)-mode LC-MS/MS for the conditioned medium of mammalian cells in this study. The results showed that this approach enabled the detection of more than 3700 cell-derived proteins in the cell culture supernatant containing FBS. We further demonstrated the potency of this approach by analyzing proteins in the conditioned media of HeLa cells with and without tumor necrosis factor (TNF) stimulation: >40 differentially accumulated proteins, including four cytokines, upon TNF stimulation were identified in the culture media, which were hardly detected by conventional proteome approaches in the literature.
In serum proteomics using mass spectrometry, the number of detectable proteins is reduced due to high-abundance proteins, such as albumin. However, recently developed data-independent acquisition mass spectrometry (DIA-MS) proteomics technology has made it possible to remarkably improve the number of proteins in a serum analysis by removing high-abundance proteins. Using this technology, we analyzed sera from patients with systemic juvenile idiopathic arthritis (sJIA), a rare pediatric disease. As a result, we identified 2727 proteins with a wide dynamic range derived from various tissue leakages. We also selected 591 proteins that differed significantly in their active phases. These proteins were involved in many inflammatory processes, and we also identified immunoproteasomes, which were not previously found in serum, suggesting that they may be involved in the pathogenesis of sJIA. A detailed high-depth DIA-MS proteomic analysis of serum may be useful for understanding the pathogenesis of sJIA and may provide clues for the development of new biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.