In this paper we propose a Hamiltonian approach to gapped topological phases on open surfaces. Our setting is an extension of the Levin-Wen model to a 2d graph on an open surface, whose boundary is part of the graph. We systematically construct a series of boundary Hamiltonians such that each of them, when combined with the usual Levin-Wen bulk Hamiltonian, gives rise to a gapped energy spectrum which is topologically protected. It is shown that the corresponding wave functions are robust under changes of the underlying graph that maintain the spatial topology of the system. We derive explicit ground-state wavefunctions of the system on a disk as well as on a cylinder. For boundary quasiparticle excitations, we are able to construct their creation, annihilation, measuring and hopping operators etc. Given a bulk string-net theory, our approach provides a classification scheme of possible types of gapped boundary conditions by Frobenius algebras (modulo Morita equivalence) of the bulk fusion category; the boundary quasiparticles are characterized by bimodules of the pertinent Frobenius algebras. Our approach also offers a set of concrete tools for computations. We illustrate our approach by a few examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.