Single-cell RNA-sequencing (scRNA-Seq) is widely used to reveal the heterogeneity and dynamics of tissues, organisms, and complex diseases, but its analyses still suffer from multiple grand challenges, including the sequencing sparsity and complex differential patterns in gene expression. We introduce the scGNN (single-cell graph neural network) to provide a hypothesis-free deep learning framework for scRNA-Seq analyses. This framework formulates and aggregates cell–cell relationships with graph neural networks and models heterogeneous gene expression patterns using a left-truncated mixture Gaussian model. scGNN integrates three iterative multi-modal autoencoders and outperforms existing tools for gene imputation and cell clustering on four benchmark scRNA-Seq datasets. In an Alzheimer’s disease study with 13,214 single nuclei from postmortem brain tissues, scGNN successfully illustrated disease-related neural development and the differential mechanism. scGNN provides an effective representation of gene expression and cell–cell relationships. It is also a powerful framework that can be applied to general scRNA-Seq analyses.
Summary Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain and the most common form of dementia among the elderly. The single-cell RNA-sequencing (scRNA-Seq) and single-nucleus RNA-sequencing (snRNA-Seq) techniques are extremely useful for dissecting the function/dysfunction of highly heterogeneous cells in the brain at the single-cell level, and the corresponding data analyses can significantly improve our understanding of why particular cells are vulnerable in AD. We developed an integrated database named scREAD (single-cell RNA-Seq database for Alzheimer's disease), which is as far as we know the first database dedicated to the management of all the existing scRNA-Seq and snRNA-Seq data sets from the human postmortem brain tissue with AD and mouse models with AD pathology. scREAD provides comprehensive analysis results for 73 data sets from 10 brain regions, including control atlas construction, cell-type prediction, identification of differentially expressed genes, and identification of cell-type-specific regulons.
Appropriate ways to measure the similarity between single-cell RNA-sequencing (scRNA-seq) data are ubiquitous in bioinformatics, but using single clustering or classification methods to process scRNA-seq data is generally difficult. This has led to the emergence of integrated methods and tools that aim to automatically process specific problems associated with scRNA-seq data. These approaches have attracted a lot of interest in bioinformatics and related fields. In this paper, we systematically review the integrated methods and tools, highlighting the pros and cons of each approach. We not only pay particular attention to clustering and classification methods but also discuss methods that have emerged recently as powerful alternatives, including nonlinear and linear methods and descending dimension methods. Finally, we focus on clustering and classification methods for scRNA-seq data, in particular, integrated methods, and provide a comprehensive description of scRNA-seq data and download URLs.
The rapid development of single-cell RNA sequencing (scRNA-Seq) technology provides strong technical support for accurate and efficient analyzing single-cell gene expression data. However, the analysis of scRNA-Seq is accompanied by many obstacles, including dropout events and the curse of dimensionality. Here, we propose the scGMAI, which is a new single-cell Gaussian mixture clustering method based on autoencoder networks and the fast independent component analysis (FastICA). Specifically, scGMAI utilizes autoencoder networks to reconstruct gene expression values from scRNA-Seq data and FastICA is used to reduce the dimensions of reconstructed data. The integration of these computational techniques in scGMAI leads to outperforming results compared to existing tools, including Seurat, in clustering cells from 17 public scRNA-Seq datasets. In summary, scGMAI is an effective tool for accurately clustering and identifying cell types from scRNA-Seq data and shows the great potential of its applicative power in scRNA-Seq data analysis. The source code is available at https://github.com/QUST-AIBBDRC/scGMAI/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.