Abstract-Wireless sensor network is a kind of brand-new information acquisition platform, which is realized by the introduction of self-organizing and auto-configuration mechanisms. Node localization technology represents a crucial component of wireless sensor network. In this paper, a localization method based on kernel principal component analysis and particle swarm optimization back propagation algorithm is carefully discussed. First of all, taking KPCA as the front-end system to extract the main components of the localization information, and then regarding the nonlinear principal components extracted from distance vectors as the input samples, and meanwhile taking the coordinates of vertices in addition to the region boundary as the output samples, the PSO-BP neural network is trained to achieve the localization model. Finally the localization of unknown nodes can be estimated. The simulation experiment result showed that the method has high ability of stability and precision, and meets the practical need of localization.Index terms: Wireless sensor network, localization, kernel principal component analysis, particle swarm optimization, back-propagation algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.