BackgroundAcute myeloid leukemia (AML) is an immunophenotypically heterogenous malignant disease, in which CD34 positivity is associated with poor prognosis. CD34+ AML cells are 10-15-fold more resistant to daunorubicin (DNR) than CD34- AML cells. Curcumin is a major component of turmeric that has shown cytotoxic activity in multiple cancers; however, its anti-cancer activity has not been well studied in DNR-insensitive CD34+ AML cells. The aim of this study was to therefore to explore curcumin-induced cytotoxicity in DNR-insensitive CD34+ AML cell lines (KG1a, Kasumi-1), DNR-sensitive U937 AML cells, and primary CD34+ AML bone-marrow-derived cells.MethodsPrimary human CD34+ cells were isolated from peripheral blood mononuclear cells or bone marrow mononuclear cells using a CD34 MicroBead kit. The growth inhibitory effects of curcumin were evaluated by MTT and colony-formation assays. Cell cycle distribution was examined by propidium iodide (PI) assay. Apoptosis was analyzed by Wright-Giemsa, Hoechst 33342 and Annexin-V/PI staining assays. The change in mitochondrial membrane potential (MMP) was examined by JC-1 staining and flow cytometry. Expression of apoptosis-related proteins was determined by reverse transcription-polymerase chain reaction and Western blotting. Short interfering RNA (siRNA) against Bcl-2 was used in CD34+ KG1a and Kasumi-1 cells incubated with/without DNR.ResultsCurcumin inhibited proliferation and induced apoptosis and G1/S arrest in both DNR-insensitive KG1a, Kasumi-1 and DNR-sensitive U937 cells. Curcumin-induced apoptosis was associated with reduced expression of both Bcl-2 mRNA and protein, subsequent loss of MMP, and activation of caspase-3 followed by PARP degradation. Curcumin synergistically enhanced the cytotoxic effect of DNR in DNR-insensitive KG1a and Kasumi-1 cells, consistent with decreased Bcl-2 expression. Accordingly, siRNA against Bcl-2 increased the susceptibility of KG1a and Kasumi-1 cells to DNR-induced apoptosis. More importantly, curcumin suppressed Bcl-2 expression, selectively inhibited proliferation and synergistically enhanced the cytotoxicity of DNR in primary CD34+ AML cells, while showing limited lethality in normal CD34+ hematopoietic progenitors.ConclusionCurcumin down-regulates Bcl-2 and induces apoptosis in DNR-insensitive CD34+ AML cell lines and primary CD34+ AML cells.
Adult T‐cell leukemia (ATL) is a prototype of the lymphoma/leukemia syndromes involving immunologically mature T‐lymphocytes. The first retrovirus described in humans, HTLV‐I, is causally related to the disease. In this study, we examined whether ATL cells die in vitro through programmed cell death (PCD), which has been shown to occur in cells affected by several other acute and chronic Icukcmias. When ATL cells from peripheral blood were cultured in serum‐free complete medium, a substantial proportion of them spontaneously died by PCD. After 48 h of culture, approximately 30% of the total DNA was fragmented. Electrophoresis indicated that the DNA of the ATL cells had been cleaved into regular oligonucleosome fragments each comprising approximately 180–200 base pairs. This process was significantly promoted by methylprednisolone and the protein kinase A (PKA) activator Sp‐cAMPS in at least some cases. Since all ATL cells possess interleukin‐2 receptors on the cell membrane, the effect of IL‐2 on spontaneous PCD was assessed. PCD after 48 h of culture was inhibited by 30–50% by 100 U/ml interleukin‐2 (IL‐2). This effect of IL‐2 to prevent spontaneous PCD was dose‐ and time‐dependent. These findings suggest that the viability of ATL cells in vivo is regulated positively and negatively by intrinsic IL‐2, glucocorticoid and regulators of PKA activity. Furthermore, the process of cell death may be involved in the development of the disease.
Ponicidin, an ent-kaurane diterpenoid derived from a constituent of the herbal supplement PC-SPES, Rabdosia rubescens, is recently reported to have anti-tumor effects on a large variety of cancers. In this study, we demonstrate that ponicidin exhibits cytotoxicity, induces apoptosis, disrupts the mitochondrial membrane potential, and triggers the activation of caspase-3, -8 and -9 in lung cancer A549 and GLC-82 cells. Ponicidin treatment of lung cancer cells caused downregulation of anti-apoptotic protein Bcl-2 and survivin as well as upregulaton of pro-apoptotic protein Bax in a time dependent manner when apoptosis ocurred. Ponicidin induced activation of caspase-3 can be blocked by a caspase-3-specific inhibitor z-DEVD-FMK Furthermore, the caspase-8-specific inhibitor z-IETD-FMK could block the ponicidin-induced activation of caspase-3, PARP cleavage, and prevented the release of cytochrome c from mitochondria into the cytoplasm. This indicate that activated caspase-8 initiates the release of cytochrome c during ponicidin-induced apoptosis. We therefore conclude that ponicidin has significant apoptosis-inducing effects by activation of caspase-3 -8, and -9 as well as downregulation of anti-apoptotic protein Bcl-2, survivin and upregulation of pro-apoptotic protein Bax, with caspase-8 acting as an upstream activator. The data offer a potential mechanism for ponicidin-induced apoptosis in lung cancer cells, suggesting that ponicidin may severve as an effective reagent for the treatment of lung cancer, and that in vivo anti-cancer effects as well as its potential clinical effectiveness need further investigation.
The combination of all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3, ATO) has been effective in obtaining high clinical complete remission (CR) rates in acute promyelocytic leukemia (APL), but the long-term efficacy and safety among newly diagnosed APL patients are unclear. In this retrospective study, total 45 newly diagnosed APL patients received ATRA/chemotherapy combination regimen to induce remission. Among them, 43 patients (95.6%) achieved complete remission (CR) after induction therapy, followed by ATO/ATRA/anthracycline-based chemotherapy sequential consolidation treatment with a median follow-up of 55 months. In these patients, the estimated overall survival (OS) and the relapse-free survival (RFS) were 94.4%±3.9% and 94.6±3.7%, respectively. The toxicity profile was mild and reversible. No secondary carcinoma was observed. These results demonstrated the high efficacy and minimal toxicity of ATO/ATRA/anthracycline-based chemotherapy sequential consolidation treatment for newly diagnosed APL in long-term follow-up, suggesting a potential frontline therapy for APL.
This study investigates the ability of a synthetic PPAR-gamma agonist, rosiglitazone (RGZ), to induce apoptosis in leukemia K562 cells. The results revealed that RGZ (>40 mmol/L) inhibits the growth of K562 cells and causes apoptosis in a time and dose-dependent manner. Apoptosis is observed clearly by Hoechst 33258 staining. Western blotting analysis demonstrates the cleavage of caspase-3 zymogen protein with the appearance of its 17-kD subunit and a dose-dependent cleavage of poly (ADP-ribose) polymerase. Furthermore, RGZ treatment down-regulates anti-apoptotic protein Bcl-2 and up-regulates pro-apoptotic protein Bax in a dosedependent manner after the cells are treated for 48 hours. Telomerase activity is decreased concurrently in a dosedependent manner. We therefore conclude that RGZ induces apoptosis in K562 cells in vitro, and that RGZ-induced apoptosis in K562 cells is highly correlated with activation of caspase-3, decreasing telomerase activity, down-regulation of the anti-apoptotic protein Bcl-2, and up-regulation of the pro-apoptotic protein Bax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.