We constructed a novel hepatocellular carcinoma-specific conditionally replicative adenovirus (CRAd). This adenovirus, designated Ad.HS4.AFP.E1A/TRAIL, expresses E1A to mediate viral replication and TRAIL to enhance HCC-killing efficacy under the control of a modified AFP promoter. An insulator HS-4 was placed in front of the AFP promoter to enhance the fidelity of the heterologous promoter. This virus was shown to have specific cytolytic activity in AFP-expressing HCC cells in vitro. Furthermore, the replication efficiency of Ad.HS4.AFP.E1A/TRAIL correlated well with AFP expression of the host cells, showing a 100-fold and 1 000 000-fold decrease in the low-and non-AFP-expressing HCC cells, respectively, compared to the high AFP-expressing HCC cells. An increase in mRNA of TRAIL and the elevated Caspase-3 activity were also observed in Ad.HS4.AFP.E1A/TRAIL-infected HCC cells. These results indicated that TRAIL expression from the viral vector activated the Caspase-3 enzymatic capacity and the HCC cells were sensitive to TRAIL. In vivo, Ad.HS4.AFP.E1A/TRAIL effectively prevented the growth of low AFP-expressing BEL-7404 xenografts. These results indicate that Ad.HS4.AFP.E1A/TRAIL could provide a new strategy of gene therapy for HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.