In this paper, we study the phase structure and equilibrium state space geometry of charged topological dilaton black holes in (n + 1)-dimensional anti-de Sitter spacetime. By considering the pairs of parameters (P ∼ V ) and (Q ∼ U ) as variables, we analyze the phase structure and critical phenomena of black holes and discuss the relation between the two kinds of critical phenomena. We find that the phase structures and critical phenomena drastically depend on the cosmological constant l (or the static electric charge Q of the black holes), dimensionality n and dilaton field Φ.
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.
We show by explicit computations that there is a superficial inconsistency between the conventional first law of black hole thermodynamics and Bekenstein-Hawking area law for three types of regular black holes. The corrected form of the first law for these regular black holes is given. The derivation relies on the general structure of the energy-momentum tensor of the matter fields. When the black hole mass parameter M is included in the energymomentum tensor, the conventional form of the first law should be modified with an extra factor. In this case, the black hole mass M can no longer be considered as the internal energy of the regular black holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.