BackgroundEstrogen receptor-positive (ER-positive) metastatic breast cancer is often intractable due to endocrine therapy resistance. Although ESR1 promoter switching events have been associated with endocrine-therapy resistance, recurrent ESR1 fusion proteins have yet to be identified in advanced breast cancer.Patients and methodsTo identify genomic structural rearrangements (REs) including gene fusions in acquired resistance, we undertook a multimodal sequencing effort in three breast cancer patient cohorts: (i) mate-pair and/or RNAseq in 6 patient-matched primary-metastatic tumors and 51 metastases, (ii) high coverage (>500×) comprehensive genomic profiling of 287–395 cancer-related genes across 9542 solid tumors (5216 from metastatic disease), and (iii) ultra-high coverage (>5000×) genomic profiling of 62 cancer-related genes in 254 ctDNA samples. In addition to traditional gene fusion detection methods (i.e. discordant reads, split reads), ESR1 REs were detected from targeted sequencing data by applying a novel algorithm (copyshift) that identifies major copy number shifts at rearrangement hotspots.ResultsWe identify 88 ESR1 REs across 83 unique patients with direct confirmation of 9 ESR1 fusion proteins (including 2 via immunoblot). ESR1 REs are highly enriched in ER-positive, metastatic disease and co-occur with known ESR1 missense alterations, suggestive of polyclonal resistance. Importantly, all fusions result from a breakpoint in or near ESR1 intron 6 and therefore lack an intact ligand binding domain (LBD). In vitro characterization of three fusions reveals ligand-independence and hyperactivity dependent upon the 3′ partner gene. Our lower-bound estimate of ESR1 fusions is at least 1% of metastatic solid breast cancers, the prevalence in ctDNA is at least 10× enriched. We postulate this enrichment may represent secondary resistance to more aggressive endocrine therapies applied to patients with ESR1 LBD missense alterations.ConclusionsCollectively, these data indicate that N-terminal ESR1 fusions involving exons 6–7 are a recurrent driver of endocrine therapy resistance and are impervious to ER-targeted therapies.
Purpose of review This review describes the current treatment of human epidermal growth factor receptor-2 (HER2) positive breast cancer with a focus on recently reported clinical trials. Treatment of resistant disease and central nervous system metastases will be reviewed as will new agents that are being developed to target HER2 amplified breast cancers. Recent Findings Recent studies evaluating trastuzumab-resistant breast cancer have shown a benefit of continuing trastuzumab with chemotherapy or with another HER2-targeted agent. Targeting the vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), and PI3 kinase pathways in addition to HER2 may enhance efficacy compared with individual agents. Several novel anti-HER2 compounds are being evaluated with promising early data. Summary HER2-positive breast cancer has traditionally been associated with poor prognosis. However, treatment with HER2-targeted therapies has changed the natural history of this disease. Greater success depends on elucidating mechanisms of resistance and exploring new methods of blocking signal transduction via HER2 and related pathways.
Background:Improving outcomes for patients with human epidermal growth factor 2-positive (HER2+) central nervous system (CNS) metastases remains an unmet clinical need. This trial evaluated a novel combination of everolimus, lapatinib and capecitabine for this disease.Methods:Patients with trastuzumab-pretreated, HER2+ breast cancer brain metastasis without prior therapy with a mammalian target of rapamycin (mTOR) inhibitor were eligible. Patients received lapatinib and everolimus daily (continuously) and capecitabine twice daily (d1–14) in 21-d cycles. The primary endpoint was the 12-week CNS objective response rate (ORR). Secondary endpoints included safety, progression-free survival (PFS), overall survival (OS), best CNS ORR and extra-CNS ORR.Results:A total of 19 participants were enrolled and treated with ⩾1 dose of the study drug. The median age was 58.5 years, the median number of therapies for metastatic breast cancer was 2.5 (0–11). Pretrial, 74% of participants had received prior lapatinib, capecitabine or both. A total of 63% had received previous CNS radiation or surgical resection and CNS radiation. The maximum tolerated doses were lapatinib at 1000 mg, everolimus at 10 mg, and capecitabine at 1000 mg/m2. Phase II proceeded with capecitabine at 750 mg/m2 due to better tolerability. The most common grade 3/4 adverse events were mucositis (16%), diarrhea, fatigue, and hypokalemia (11% each). Of 11 participants evaluable for 12-week CNS ORR, 3 (27%) had partial response and 7 (64%) had stable disease. The best CNS ORR in eligible participants was 28% (5/18). The median PFS and OS were 6.2 and 24.2 months, respectively.Conclusions:This novel triplet combination of lapatinib, everolimus, and capecitabine is well tolerated and yielded a 27% response rate in the CNS at 12 weeks in heavily pretreated participants. Larger studies are warranted to further evaluate this regimen.Trial registration:ClinicalTrials.gov: NCT01783756. Registered 05 February 2013, https://clinicaltrials.gov/ct2/show/NCT01783756
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.