In this study, the reversible conversion between the high- (HP) and low-potential (LP) forms of Cytb(559) has been analyzed in Tris-washed photosystem II (PSII) enriched membranes. These samples are deprived of the Mn cluster of the water-oxidizing complex (WOC) and the extrinsic regulatory proteins. The results obtained by application of optical and EPR spectroscopy reveal that (i) under aerobic conditions, the vast majority of Cytb(559) exhibits a low midpoint potential, (ii) after removal of O(2) in the dark, a fraction of Cytb(559) is converted to the high-potential form which reaches level of about 25% of the total Cytb(559), (iii) a similar dark transformation of LP --> HP Cytb(559) occurs under reducing conditions (8 mM hydroquinone), (iv) under anaerobic conditions and in the presence of 8 mM hydroquinone, about 60% of the Cytb(559) attains the HP form, (v) the interconversion is reversible with the re-establishment of aerobic conditions, and (vi) aerobic and oxidizing conditions (2 mM ferricyanide or 0.5 mM potassium iridate) induce a decrease of the amount of the HP form, also showing that the conversion is reversible. This reversible interconversion between LP and HP Cytb(559) is not observed in PSII membrane fragments with an intact WOC. On the basis of these findings, the possibility is discussed that the O(2)-dependent conversion of Cytb(559) in PSII complexes lacking a functionally competent WOC is related to a protective role of Cytb(559) in photoinhibition and/or that it is involved in the regulation of the assembly of a competent water-oxidizing complex in PSII.
The effect of oxygen and anaerobiosis on the redox properties of Cyt b(559) was investigated in PSII preparations from spinach with different degree of disintegration of the donor side. Comparative studies were performed on intact PSII membranes and PSII membranes that were deprived of the 18-kDa peripheral subunit (0.25 NaCl washed), the 18- and 24-kDa peripheral subunits (1 M NaCl washed), the 18-, 24- and 33-kDa peripheral subunits (1.2 M CaCl(2) washed), Cl depleted and after complete depletion of the Mn cluster (Tris washed). In active PSII centers, about 75% of Cyt b(559) was found in the high-potential form and the rest in the intermediate potential form. With decomposition of the donor side, the intermediate potential form started to dominate, reaching more than 90% after Tris treatment. The oxygen-dependent conversion of the intermediate potential form of Cyt b(559) into the low-potential and high-potential forms was only observed after treatments that directly affect the Mn cluster. In PSII membranes, deprived of all three extrinsic subunits (CaCl(2) treatment), 21% of the intermediate potential form was converted into the low-potential form and 14% into the high-potential form by the removal of oxygen. In Tris-washed PSII membranes, completely lacking the Mn cluster, this conversion amounted to 60 and 33%, respectively. In intact PSII membranes, the oxygen-dependent conversion did not occur. The possible physiological role of this oxygen-dependent behavior of the Cyt b(559) redox forms during the assembly/photoactivation cycle of PSII is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.