Penelitian data mining pada keterlambatan pembayaran SPP telah banyak dilakukan namun mayoritas penelitian memiliki dataset yang berdimensi rendah. Hal ini dapat menjadi bahan kajian bagi para peneliti selanjutnya dikarenakan penelitian terkait dataset keterlambatan biaya SPP yang berdimensi tinggi hanya mendapatkan akurasi dibawah 60%. Ditambah lagi penelitian klasifikasi data mining yang menguji hubungan antar atribut-atribut yang digunakan pada pemodelan terhadap label data relatif masih minim. Penelitian ini bertujuan untuk menganalisis peningkatan akurasi algoritma klasifikasi yakni K-Nearest Neighbor, Naive Bayes, C4.5, Random forest, dan Logistic Regression dalam memprediksi keterlambatan biaya kuliah yang dioptimasi dengan beberapa perbandingan algoritma seleksi fitur diantaranya Mutual Information, Forward Selection, Backward, dan Recursive Elimination. Data yang digunakan adalah data pembayaran SPP mahasiswa dari tahun 2019 - 2021 dengan teknik pembagian data menggunakan metode 5-fold cross validation. Hasil dari penelitian ini ditemukan bahwa algoritma Backward Elimination memberikan peningkatan akurasi tertinggi dengan nilai rata-rata 0,52%, sedangkan algoritma klasifikasi yang memiliki akurasi tertinggi terdapat pada random forest dan C4.5 dengan nilai akurasi sebesar 62,6%, precision 65%, recall 63% dan f1-score 61%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.