Chemical reaction networks (CRNs) have been proposed as an abstraction for molecular computing. DNA strand displacement (DSD) reactions are good candidates to realize this endeavor, since DNA strands can be wired to implement the desired dynamic behavior in a test tube. Specialists use simulators to help them design such chemical systems before experimental implementation. In this sense, we present the DNAr package, an alternative open-source tool, developed in R language, for users from multidisciplinary areas. The current version of our tool offers functions to simulate CRNs, convert a formal CRN into a DSD network, interpret results, export to Visual DSD, and create libraries. Here, we use the consensus CRN to show DNAr features and a neural network model to demonstrate scalability, simulating more than 600 chemical reactions in a few minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.