This work proposes an interpretation technique for injectivity tests that provides a new estimation for skin zone permeability and radius in single-layer reservoirs. A means to compute the reservoir skin factor in multilayer commingled reservoirs is also presented. Under the assumption that layer flow-rates are decoupled, the suggested method was extended to compute individual layer permeabilities and skin factors. The results indicate that this hypothesis is valid in reservoirs where layer skin factors are similar.
The main purpose of this work is to present an interpretation method for injectivity test in a two-layer reservoir that can be extended to a multilayer approach, based on new analytical solutions to the well pressure response. The developed formulation uses a radially composite reservoir approach and considers that the water front propagation may be approximated by a piston-like flow displacement. The reservoir is assumed to be laterally infinite and properties such as permeability and porosity may be different in each layer. The solutions were developed in the Laplace domain and then inverted to real domain using the Stehfest Algorithm. The proposed formulation was then validated by comparison with a numerical flow simulator. Results showed a good agreement between the numerical simulator and the analytical model. Also, a sensitivity study was done by comparing the results of different scenarios varying oil viscosities and injection flow rate to assess how these properties affect the pressure and pressure derivative profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.