This review describes the current state of magnetic criteria of aromaticity. The introduction contains the fundamentals of ring currents in aromatic and antiaromatic systems, followed by a brief description of experimental and computational tools: NMR, diamagnetic susceptibility exaltation, current density analyses (CDA) and nucleus independent chemical shifts (NICS). This is followed by more comprehensive chapters: NMR - focusing on the work of R. Mitchell - NICS and CDA - describing the progress and development of the methods to their current state and presenting some examples of representative work.
Nucleus-independent chemical shift (NICS)-based methods are very popular for the determination of the induced magnetic field under an external magnetic field. These methods are used mostly (but not only) for the determination of the aromaticity and antiaromaticity of molecules and ions, both qualitatively and quantitatively. The ghost atom that serves as the NICS probe senses the induced magnetic field and reports it in the form of an NMR chemical shift. However, the source of the field cannot be determined by NICS. Thus, in a multi-ring system that may contain more than one induced current circuit (and therefore more than one source of the induced magnetic field) the NICS value may represent the sum of many induced magnetic fields. This may lead to wrong assignments of the aromaticity (and antiaromaticity) of the systems under study. In this paper, we present a NICS-based method for the determination of local and global ring currents in conjugated multi-ring systems. The method involves placing the NICS probes along the X axis, and if needed, along the Y axis, at a constant height above the system under study. Following the change in the induced field along these axes allows the identification of global and local induced currents. The best NICS type to use for these scans is NICSπZZ , but it is shown that at a height of 1.7 Å above the molecular plane, NICSZZ provides the same qualitative picture. This method, namely the NICS-XY-scan, gives information equivalent to that obtained through current density analysis methods, and in some cases, provides even more details.
There has been an ongoing effort to overcome the limitations associated with the stability of hybrid organic-inorganic perovskite solar cells by using different organic agents as additives to the perovskite formulations. The functionality of organic additives has been predominantly limited to exploiting hydrogen bonding interactions, with the relevant atomic-level binding modes remaining elusive. Herein, we introduce a new bifunctional supramolecular modulator, 1,2,4,5-tetrafluoro-3,6-diiodobenzene, which interacts with the surface of the triple-cation double-halide perovskite material via halogen bonding. We elucidate its binding mode using two-dimensional solid-state 19 F NMR spectroscopy in conjunction with DFT calculations. As a result, we demonstrate a stability enhancement of the perovskite solar cells upon supramolecular modulation, without compromising the high photovoltaic performances. Supporting Information Materials and Methods, DFT Energy and NMR Chemical Shift Calculations, Supplementary Data, and Transient Capacitance Measurements. The Supporting Information is available free of charge on the ACS Publications website.
The use of layered perovskites is an important strategy to improve the stability of hybrid perovskite materials and their optoelectronic devices. However, tailoring their properties requires accurate structure determination at the atomic scale, which is a challenge for conventional diffraction-based techniques. We demonstrate the use of nuclear magnetic resonance (NMR) crystallography in determining the structure of layered hybrid perovskites for a mixed-spacer model composed of 2-phenylethylammonium (PEA + ) and 2-(perfluorophenyl)ethylammonium (FEA + ) moieties, revealing nanoscale phase segregation. Moreover, we illustrate the application of this structure in perovskite solar cells with power conversion efficiencies that exceed 21%, accompanied by enhanced operational stability.
Triplet‐state aromaticity has been recently proposed as a strategy for designing functional organic electronic compounds, many of which are polycyclic aromatic systems. However, in many cases, the aromatic nature of the triplet state cannot be easily predicted. Moreover, it is often unclear how specific structural manipulations affect the electronic properties of the excited‐state compounds. Herein, the relationship between the structure of polybenzenoid hydrocarbons (PBHs) and their spin‐density distribution and aromatic character in the first triplet excited state is studied. Although a direct link is not immediately visible, classifying the PBHs according to their annulation sequence reveals regularities. Based on these, a set of guidelines is defined to qualitatively predict the location of spin and paratropicity and the singlet–triplet energy gap in larger PBHs, using only their smaller tri‐ and tetracyclic components, and subsequently tested on larger systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.