RAPD, RFLP, nuclear SSLP and chloroplast SSLP analyses were carried out to clarify the phylogenetic relationships among A-genome species of rice. In total, 12 cultivars of Oryza sativa (4 Japonica, 3 Javanica and 5 Indica),
Gram-negative bacteria most often use N-acyl homoserine lactones (AHLs) as intercellular quorum-sensing signal molecules. In this study, it was demonstrated that rice plants contain AHL mimic molecules that are very sensitive to the highly specific AiiA lactonase enzyme and can activate three different AHL bacterial biosensors, indicating that the compounds have a homoserine lactone structure and could be AHLs. The possible source and biological significance of this finding are discussed.
Burkholderia plantarii is a plant pathogen responsible for causing rice seedling blight. The molecular mechanisms responsible for this pathogenicity are currently unknown. In this study, we report the identification and characterization of N-acyl homoserine lactone quorum sensing and the stationary phase RpoS sigma factor of B. plantarii. Both global regulatory systems are involved in causing rice seedling blight. This is the first report of gene regulators of B. plantarii implicated in the disease.
A method using particle bombardment and beta-glucuronidase (GUS) assay was applied to rice callus for detecting the excision of the maize Ds element trans-activated by the Ac transposase source. Excision of Ds biolistically introduced into rice callus resulted in the restoration of the interrupted gus gene expression, allowing visual detection of trans-activation two days after bombardment. Only the transgenic callus lines expressing the Ac transposase gene and the wild-type callus co-transformed with Ac and Ds revealed GUS activity. Frequency of excision, estimated based on the relative GUS activity, ranged from 0.3% to 2.2%. Callus lines showing different levels of Ac transcripts revealed varying excision frequencies. At the later stages of callus growth after selection for the Ac/Ds transformed lines, excision events were detected by GUS assay and confirmed by PCR and sequence analyses of the excision sites in individual colonies. GUS activity was also demonstrated in the primary regenerants from the Ac/Ds-transformed callus colonies. The method described in this study may be used as an approach for rapid detection of excision events and assessment of various factors limiting Ac/Ds activity in rice cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.