The fragmentation behavior of (+)-silybin (1) and (+)-deuterosilybin (2), as well as of their flavanone-3-ol-type building blocks, such as 3,5,7-trihydroxy-2-phenyl-4-chromanone (3) and 2-(1,4-benzodioxolanyl)-3,5,7-trihydroxy-4-chromanone (4), were investigated by atmospheric pressure chemical ionization quadropole time-of-flight tandem mass spectrometry in the positive ion mode (APCI(+)-QqTOF MS/MS). The product ion spectra of the protonated molecules of 1 revealed a rather complicated fragmentation pattern with product ions originating from consecutive and competitive loss of small molecules such as H2O, CO, CH2O, CH3OH and 2-methoxyphenol, along with the A+- and B+-type ions arising from the cleavage of the C-ring of the flavanone-3-ol moiety. The elucidation of the fragmentation behavior of 1 was facilitated by acquiring information on the fragmentation characteristics of the flavanone-3-ol moieties and 2. The capability of the accurate mass measurement on the quadrupole time-of-flight mass spectrometer allowed us to determine the elemental composition of each major product ion. Second-generation product ion spectra obtained by combination of in-source collision induced dissociation (CID) with selective CID (pseudo-MS(3)) was also helpful in elaborating the fragmentation pathways and mechanism. Based on the experimental results, a fragmentation mechanism as well as fragmentation pathways for 1 and its flavanone-3-ol building blocks (3, 4) are proposed and discussed.
Pseudomonas fluorescens lipase-catalyzed transesterification of 2-hydroxymethyl-1,4-benzodioxanes of different substitution patterns were studied in the presence of vinyl acetate in organic solvents. The influence of structural features on the conversion and enantioselectivity is discussed and it is shown that the presence of a C-3 methyl or aryl substituent significantly hinders the binding of the substrate to the active site of the enzyme. Thus, with a bulky C-3 substituent no transesterification of the 2-hydroxymethyl group could be observed.
Chiral carbonyl compounds can easily be enantiodifferentiated by the dirhodium method. The rhodium atoms reveal a remarkable selectivity in binding to oxygen atoms, which is of great advantage for discriminating chiral polyoxygenated natural products. Amides are the strongest ligands followed by ketones and esters; ethers and alcohols/phenols are even less effective. This sequence is rationalized by electronic charges at the oxygen atoms, as obtained from density functional calculations.
The reported enantioselective synthesis for the preparation of (+)-(2R,3R)-2-(4-
hydroxy-3-methoxyphenyl)-3-hydroxymethyl-1,4-benzodioxane-6-carbaldehyde, precursor
for the stereoselective synthesis of bioactive flavanolignans, could not be reproduced.
Thus, the target molecule was prepared via the synthesis and separation of diastereomeric
O-glucosides. TDDFT-ECD calculations and the 1,4-benzodioxane helicity rule were utilized
to determine the absolute configuration. ECD calculations also confirmed that the 1Lb
Cotton effect is governed by the helicity of the heteroring, while the higher-energy ECD
transitions reflect mainly the orientation of the equatorial C-2 aryl group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.