The origin of paired appendages was a major evolutionary innovation for vertebrates, marking the first step towards fin- (and later limb-) driven locomotion. The earliest vertebrate fossils lack paired fins but have well-developed median fins, suggesting that the mechanisms of fin development were assembled first in the midline. Here we show that shark median fin development involves the same genetic programs that operate in paired appendages. Using molecular markers for different cell types, we show that median fins arise predominantly from somitic (paraxial) mesoderm, whereas paired appendages develop from lateral plate mesoderm. Expression of Hoxd and Tbx18 genes, which specify paired limb positions, also delineates the positions of median fins. Proximodistal development of median fins occurs beneath an apical ectodermal ridge, the structure that controls outgrowth of paired appendages. Each median fin bud then acquires an anteroposteriorly-nested pattern of Hoxd expression similar to that which establishes skeletal polarity in limbs. Thus, despite their different embryonic origins, paired and median fins utilize a common suite of developmental mechanisms. We extended our analysis to lampreys, which diverged from the lineage leading to gnathostomes before the origin of paired appendages, and show that their median fins also develop from somites and express orthologous Hox and Tbx genes. Together these results suggest that the molecular mechanisms for fin development originated in somitic mesoderm of early vertebrates, and that the origin of paired appendages was associated with re-deployment of these mechanisms to lateral plate mesoderm.
The evolutionary transition of fins to limbs involved development of a new suite of distal skeletal structures, the digits. During tetrapod limb development, genes at the 5′ end of the HoxD cluster are expressed in two spatiotemporally distinct phases. In the first phase, Hoxd9-13 are activated sequentially and form nested domains along the anteroposterior axis of the limb. This initial phase patterns the limb from its proximal limit to the middle of the forearm. Later in development, a second wave of transcription results in 5′ HoxD gene expression along the distal end of the limb bud, which regulates formation of digits. Studies of zebrafish fins showed that the second phase of Hox expression does not occur, leading to the idea that the origin of digits was driven by addition of the distal Hox expression domain in the earliest tetrapods. Here we test this hypothesis by investigating Hoxd gene expression during paired fin development in the shark Scyliorhinus canicula, a member of the most basal lineage of jawed vertebrates. We report that at early stages, 5′Hoxd genes are expressed in anteroposteriorly nested patterns, consistent with the initial wave of Hoxd transcription in teleost and tetrapod paired appendages. Unexpectedly, a second phase of expression occurs at later stages of shark fin development, in which Hoxd12 and Hoxd13 are re-expressed along the distal margin of the fin buds. This second phase is similar to that observed in tetrapod limbs. The results indicate that a second, distal phase of Hoxd gene expression is not uniquely associated with tetrapod digit development, but is more likely a plesiomorphic condition present the common ancestor of chondrichthyans and osteichthyans. We propose that a temporal extension, rather than de novo activation, of Hoxd expression in the distal part of the fin may have led to the evolution of digits.
Fossil data suggest that limbs evolved from fish fins by sequential elaboration of their distal endoskeleton, giving rise to the autopod close to the tetrapod origin. This elaboration may have occurred by a simultaneous reduction of the distal ectodermal fold of fish fins. Modulation of 5'Hoxd gene transcription, through tetrapod-specific digit enhancers, has been suggested as a possible evolutionary mechanism involved in these morphological transformations. Here, we overexpress hoxd13a in zebrafish to investigate the impact of increasing 5'Hoxd expression during fin development. This overexpression causes increased proliferation, distal expansion of chondrogenic tissue and finfold reduction. In addition, we also show that the tetrapod-specific 5'Hoxd enhancer CsC promotes similar expression in zebrafish fins and mouse limbs. Our results support the idea that modulation of 5'Hoxd gene expression, by acquisition of novel enhancer elements, offered the substrate for the evolution of fins and the origin of tetrapod limbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.