An “energy evolution” is necessary to manifest an environmentally sustainable world while meeting global energy requirements, with natural gas being the most suitable transition fuel. Covering the ever-increasing demand requires exploiting lower value sour gas accumulations, which involves an acid gas treatment issue due to the greenhouse gas nature and toxicity of its constituents. Successful design of the process requires avoiding the formation of acid gas vapor which, in turn, requires time-consuming and complex phase behavior calculations to be repeated over the whole operating range. In this work, we propose classification models from the Machine Learning field, able to rapidly identify the problematic vapor/liquid encounters, as a tool to accelerate phase behavior calculations. To set up this model, a big number of acid gas instances are generated by perturbing pressure, temperature, and acid gas composition and offline solving the stability problem. The generated data are introduced to various classification models, selected based on their ability to provide rapid answers when trained. Results show that by integrating the resulting trained model into the gas reinjection process simulator, the simulation process is substantially accelerated, indicating that the proposed methodology can be readily utilized in all kinds of acid gas flow simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.