In this research we report the gas-sensing properties of TiO2-x/TiO2-based hetero-structure, which was ‘self-heated’ by current that at constant potential passed through the structure. Amperometric measurements were applied for the evaluation of sensor response towards ethanol, methanol, n-propanol and acetone gases/vapours. The sensitivity towards these gases was based on electrical resistance changes, which were determined by amperometric measurements of current at fixed voltage applied between Pt-based contacts/electrodes deposited on the TiO2-x/TiO2-based layer. X-ray diffraction (XRD) analysis revealed the formation of TiO2-x/TiO2-based hetero-structure, which is mainly based on Ti3O5/TiO2 formed during the hydro-thermal oxidation-based sensing-layer preparation process. Additionally, photoluminescence and time-resolved photoluminescence decay kinetics-based signals of this sensing structure revealed the presence of TiO2 mainly in the anatase phase in the TiO2-x/TiO2-based hetero-structure, which was formed at 400 °C annealing temperature. The evaluation of TiO2-x/TiO2-based gas-sensing layer was performed at several different temperatures (25 °C, 72 °C, 150 °C, 180 °C) and at these temperatures different sensitivity to the aforementioned gaseous materials was determined.
A novel polyimide (PI) and imide compound emitting prominent reddish-orange fluorescence under excitation by UV light were prepared based on 3-hydroxypyromellitic dianhydride (PHDA), and their fluorescence properties were examined. The steady-state fluorescence spectrum of a PI film displayed an emission band at 590 nm with a very large Stokes shift (ν = 10 448 cm −1 ) via the excited-state intramolecular proton transfer (ESIPT), while the time-resolved fluorescence spectrum showed a rapid decay of the emission band of the enol form at around 400 nm within 15 ps. Transient absorption measurements showed an induced absorption and stimulated emission of the keto form with a time constant of ca. 3.0 ps, implying that ESIPT occurs on this time scale. Consequently, introduction of a hydroxy group into the pyromellitic moiety of PIs and imide compounds led to the long-wavelength ESIPT emission applicable to spectral converters having high thermal, mechanical, and environmental stabilities.
Novel donor-acceptor compounds consisting of singly bonded fluorene (Fl), benzothiadiazole (BT), and carbazole (Cz) functional units in the same molecule were investigated. Analysis of the optical spectra and fluorescence transients of the compounds revealed the domination of intramolecular charge transfer (ICT) states with high fluorescence quantum yield (72%-85%). A similar Cz-Fl-Cz compound exhibiting 100% fluorescence quantum yield and no ICT character was also studied as a reference to reveal the impact of electron-accepting BT groups. Thorough examination of the optical properties of the compounds in different media, i.e., dilute solution and polymer matrix, indicated their twisted conformations due to steric hindrance in the ground state and flattened geometry in the excited state for both reference and ICT compounds. Remarkable fluorescence efficiency losses (amounting to 70%) observed upon casting the molecular solutions into neat films were determined to originate from the low-fluorescent twisted conformers and migration-facilitated exciton quenching. The majority of emission efficiency losses (over 70%) were caused by the twisted conformers, whereas only less than 30% by exciton-migration-induced nonradiative deactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.