To address aggravating environmental and energy problems, active, efficient, low-cost, and robust electrocatalysts (ECs) are actively pursued as substitutes for the current noble metal ECs. Therefore, in this study, we report the preparation of graphene flakes (GF) doped with S and N using 2-5-dimercapto-1,3,4-thiadiazole (S3N2) as precursor followed by the immobilization of cobalt spinel oxide (Co3O4) or manganese spinel oxide (Mn3O4) nanoparticles through a one-step co-precipitation procedure (Co/S3N2–GF and Mn/S3N2–GF). Characterization by different physicochemical techniques (Fourier Transform Infrared (FTIR), Raman spectroscopy, Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD)) of both composites shows the preservation of the metal oxide spinel structure and further confirms the successful preparation of the envisaged electrocatalysts. Co/S3N2–GF composite exhibits the best ORR performance with an onset potential of 0.91 V vs. RHE, a diffusion-limiting current density of −4.50 mA cm−2 and selectivity for the direct four-electron pathway, matching the results obtained for commercial Pt/C. Moreover, both Co/S3N2–GF and Mn/S3N2–GF showed excellent tolerance to methanol poisoning and good stability.
Biochar (BCH) is a carbon-based bio-material produced from thermochemical conversion of biomass. Several activation or functionalization methods are usually used to improve physicochemical and functional properties of BCHs. In the context of green and sustainable future development, activated and functionalized biochars with abundant surface functional groups and large surface area can act as effective catalysts or catalyst supports for chemical transformation of a range of bioproducts in biorefineries. Above the well-known BCH applications, their use as adsorbents to remove pollutants are the mostly discussed, although their potential as catalysts or catalyst supports for advanced (electro)catalytic processes has not been comprehensively explored. In this review, the production/activation/functionalization of metal-supported biochar (M-BCH) are scrutinized, giving special emphasis to the metal-functionalized biochar-based (electro)catalysts as promising catalysts for bioenergy and bioproducts production. Their performance in the fields of biorefinery processes, and energy storage and conversion as electrode materials for oxygen and hydrogen evolutions, oxygen reduction, and supercapacitors, are also reviewed and discussed.
Herein, S‐doped graphene flakes‐based composites with Fe3O4 and/or CuS nanoparticles (NPs) are reported as photo‐Fenton catalysts for the 4‐nitrophenol (4‐NP) degradation. The S‐doped graphene flakes (S‐GF) were prepared using a thermal treatment approach, and the nanocomposites by the in situ growth of Fe3O4 and/or CuS onto the S‐GF scaffold. The characterization methods confirmed the formation of two‐ and three‐components nanocomposites. The Fe3O4 NPs presented a cubic inverse spinel structure and the CuS phases a covellite structure, both with smaller crystallite sizes in the nanocomposites. The new nanocomposites showed higher ability to catalyze the photo‐Fenton 4‐NP degradation than the individual components. The S‐GF@CuS−Fe3O4 nanocomposite exhibited the best catalytic activity: 95.2 % of 4‐NP degradation, a kinetic of pseudo‐first order (k=0.016 min−1), high photo‐Fenton catalytic stability and catalyst's composition/structure preservation. The CuS NPs showed an important role in the photo‐Fenton‐like catalytic activity improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.