Metformin can act in muscle, inhibiting the complex I of the electron transport chain and decreasing mitochondrial reactive oxygen species. Our hypothesis is that the inhibition of complex I can minimize damage oxidative in muscles of hypoinsulinemic rats. The present study investigated the effects of insulin and/or metformin treatment on oxidative stress levels in the gastrocnemius muscle of diabetic rats. Rats were rendered diabetic (D) with an injection of streptozotocin and were submitted to treatment with insulin (D+I), metformin (D+M), or insulin plus metformin (D+I+M) for 7 days. The body weight, glycemic control, and insulin resistance were evaluated. Then, oxidative stress levels, glutathione antioxidant defense system, and antioxidant status were analyzed in the gastrocnemius muscle of hypoinsulinemic rats. The body weight decreased in D+M compared to ND rats. D+I and D+I+M rats decreased the glycemia and D+I+M rats increased the insulin sensitivity compared to D rats. D+I+M reduced the oxidative stress levels and the activity of catalase and superoxide dismutase in skeletal muscle when compared to D+I rats. In conclusion, our results reveal that dual therapy with metformin and insulin promotes more benefits to oxidative stress control in muscle of hypoinsulinemic rats than insulinotherapy alone.
The increase in antioxidant responses promoted by regular physical activity is strongly associated with the attenuation of chronic oxidative stress and physiological mechanisms related to exercise adaptation. The aim of this work was to evaluate and compare how different exercise protocols (HIIE: high-intensity interval exercise, CE: continuous exercise, and RE: resistance exercise) may alter salivary and plasmatic antioxidants and salivary markers of exercise intensity and nitric oxide. Thirteen healthy, trained male subjects were submitted to the three exercise protocols. Blood and saliva samples were collected at the points preexercise, postexercise, and 3 hours postexercise. Antioxidants (total antioxidant capacity, superoxide dismutase and catalase activities, and levels of reduced glutathione and uric acid), markers of exercise intensity (salivary total protein and amylase activity), and salivary nitric oxide were evaluated. As a result, all exercise protocols increased the markers of exercise intensity and nitric oxide. Antioxidant response was increased after exercise, and it was found that a single HIIE session exerts a similar pattern of antioxidant response compared to CE, in plasma and saliva samples, while RE presented minor alterations. We suggest that HIIE may lead to alterations in antioxidants and consequently to the physiological processes related to redox, similar to the CE, with the advantage of being performed in a shorter time. In addition, the antioxidant profile of saliva samples showed to be very similar to that of plasma, suggesting that saliva may be an alternative and noninvasive tool in sports medicine for the study of antioxidants in different physical exercise protocols.
This study examined the variation in salivary nitric oxide (NO), alpha-amylase (sAA) and serum markers of muscle injury during 21 weeks of training in elite swimmers. Samples of saliva and blood were collected once a month during 5 months from 11 male professional athletes during their regular training season. The variation in each marker throughout the 21 weeks was compared with the dynamics of training volume, intensity and load. Unstimulated whole saliva was assessed for NO and sAA whereas venous blood was assessed for lactate dehydrogenase, creatine kinase, and γ-glutamyltransferase. Nitric oxide and sAA showed a proportional response to the intensity of training. However, whereas the concentration of NO increased across the 21 weeks, the activity of sAA decreased. Similar variations in the concentration of NO and the markers of muscle injury were also observed. The higher concentration of NO might be attributed to changes in haemodynamics and muscle regenerative processes. On the other hand, autonomic regulation towards parasympathetic predominance might have been responsible for the decrease in sAA activity. These findings provide appealing evidence for the utilization of salivary constituents in sports medicine to monitor training programmes.
A polyphenol-enriched fraction from Annona crassiflora fruit peel (Ac-Pef) containing chlorogenic acid, (epi)catechin, procyanidin B2, and caffeoyl-glucoside was investigated against hepatic oxidative and nitrosative stress in streptozotocin-induced diabetic rats. Serum biochemical parameters, hepatic oxidative and nitrosative status, glutathione defense system analysis, and in silico assessment of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the main compounds of Ac-Pef were carried out. Ac-Pef treatment during 30 days decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activities, as well as hepatic lipid peroxidation, protein carbonylation and nitration, inducible nitric oxide synthase level, and activities and expressions of glutathione peroxidase, superoxide dismutase, and catalase. There were increases in antioxidant capacity, glutathione reductase activity, and reduced glutathione level. ADMET predictions of Ac-Pef compounds showed favorable absorption and distribution, with no hepatotoxicity. A. crassiflora fruit peel showed hepatoprotective properties, indicating a promising natural source of bioactive molecules for prevention and therapy of diabetes complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.