Despite being a classical growth disorder, pituitary gigantism has not been studied previously in a standardized way. We performed a retrospective, multicenter, international study to characterize a large series of pituitary gigantism patients. We included 208 patients (163 males; 78.4%) with growth hormone excess and a current/previous abnormal growth velocity for age or final height O2 S.D. above country normal means. The median onset of rapid growth was 13 years and occurred significantly earlier in females than in males; pituitary adenomas were diagnosed earlier in females than males (15.8 vs 21.5 years respectively). Adenomas were R10 mm (i.e., macroadenomas) in 84%, of which extrasellar extension occurred in 77% and invasion in 54%. GH/IGF1 control was achieved in 39% during long-term follow-up. Final height was greater in younger onset patients, with larger tumors and higher GH levels. Later disease control was associated with a greater difference from mid-parental height (rZ0.23, PZ0.02). AIP mutations occurred in 29%; microduplication at Xq26.3 -X-linked acrogigantism (X-LAG) -occurred in two familial isolated pituitary adenoma kindreds and in ten sporadic patients. Tumor size was not different in X-LAG, AIP mutated and genetically negative patient groups. AIP-mutated and X-LAG patients were significantly younger at onset and diagnosis, but disease control was worse in genetically negative cases. Pituitary gigantism patients are characterized by male predominance and large tumors that are difficult to control. Treatment delay increases final height and symptom burden. AIP mutations and X-LAG explain many cases, but no genetic etiology is seen in O50% of cases.
Acromegaly is a rare disorder caused by chronic growth hormone (GH) hypersecretion. While diagnostic and therapeutic methods have advanced, little information exists on trends in acromegaly characteristics over time. The Liège Acromegaly Survey (LAS) Database, a relational database, is designed to assess the profile of acromegaly patients at diagnosis and during long-term follow-up at multiple treatment centers. The following results were obtained at diagnosis. The study population consisted of 3173 acromegaly patients from ten countries; 54.5% were female. Males were significantly younger at diagnosis than females (43.5 vs 46.4 years; P < 0.001). The median delay from first symptoms to diagnosis was 2 years longer in females (P = 0.015). Ages at diagnosis and first symptoms increased significantly over time (P < 0.001). Tumors were larger in males than females (P < 0.001); tumor size and invasion were inversely related to patient age (P < 0.001). Random GH at diagnosis correlated with nadir GH levels during OGTT (P < 0.001). GH was inversely related to age in both sexes (P < 0.001). Diabetes mellitus was present in 27.5%, hypertension in 28.8%, sleep apnea syndrome in 25.5% and cardiac hypertrophy in 15.5%. Serious cardiovascular outcomes like stroke, heart failure and myocardial infarction were present in <5% at diagnosis. Erythrocyte levels were increased and correlated with IGF-1 values. Thyroid nodules were frequent (34.0%); 820 patients had colonoscopy at diagnosis and 13% had polyps. Osteoporosis was present at diagnosis in 12.3% and 0.6–4.4% had experienced a fracture. In conclusion, this study of >3100 patients is the largest international acromegaly database and shows clinically relevant trends in the characteristics of acromegaly at diagnosis.
Somatostatin analogs (SA) are widely used in acromegaly, either as first-line or adjuvant treatment after surgery. First-line treatment with these drugs is generally used in the patients with macroadenomas or in those with clinical conditions so severe as to prevent unsafe reactions during anesthesia. Generally, the response to SA takes into account both control of GH and IGF-I excess, with consequent improvement of clinical symptoms directly related to GH and IGF-I excess, and tumor shrinkage. This latter effect is more prominent in the patients treated first-line and bearing large macroadenomas, but it is also observed in patients with microadenomas, even with little clinical implication. Predictors of response are patients' gender, age, initial GH and IGF-I levels, and tumor mass, as well as adequate expression of somatostatin receptor types 2 and 5, those with the highest affinity for octreotide and lanreotide. Only sporadic cases of somatostatin receptor gene mutation or impaired signaling pathways have been described in GH-secreting tumors so far. The response to SA also depends on treatment duration and dosage of the drug used, so that a definition of resistance based on short-term treatments using low doses of long-acting SA is limited. Current data suggest that response to these drugs is better analyzed taking together biochemical and tumoral effects because only the absence of both responses might be considered as a poor response or resistance. This latter evidence seems to occur in 25% of treated patients after 12 months of currently available long-acting SA.
Acromegaly is associated with an enhanced mortality, with cardiovascular and respiratory complications representing not only the most frequent comorbidities but also two of the main causes of deaths, whereas a minor role is played by metabolic complications, and particularly diabetes mellitus. The most prevalent cardiovascular complications of acromegaly include a cardiomyopathy, characterized by cardiac hypertrophy and diastolic and systolic dysfunction together with arterial hypertension, cardiac rhythm disorders and valve diseases, as well as vascular endothelial dysfunction. Biochemical control of acromegaly significantly improves cardiovascular disease, albeit completely recovering to normal mainly in young patients with short disease duration. Respiratory complications, represented mainly by sleep-breathing disorders, particularly sleep apnea, and respiratory insufficiency, frequently occur at the early stage of the disease and, although their severity decreases with disease control, this improvement does not often change the indication for a specific therapy directed to improve respiratory function. Metabolic complications, including glucose and lipid disorders, are variably reported in acromegaly. Treatments of acromegaly may influence glucose metabolism, and the presence of diabetes mellitus in acromegaly may affect the choice of treatments, so that glucose homeostasis is worth being monitored during the entire course of the disease. Early diagnosis and prompt treatment of acromegaly, aimed at obtaining a strict control of hormone excess, are the best strategy to limit the development or reverse the complications and prevent the premature mortality.
Objective: We aimed to investigate the efficacy of pegvisomant in patients with acromegaly resistant to long-term (^24-month), high-dose treatment with octreotide-LAR (40 mg/month) or lanreotide (120 mg/month). Design:This was an open, prospective study. Subjects and Methods: We studied 16 patients with acromegaly (nine women; aged 28 -61 years). The main outcome measures were IGF-I levels, blood pressure, glucose tolerance and safety (liver function and tumor size). Pegvisomant was given at doses of 10-40 mg s.c. daily. Dose titration was performed every month by IGF-I assay. Results: Three patients spontaneously stopped pegvisomant treatment after 6-9 months because of poor compliance; from the measurement of serum pegvisomant, another patient was found not to inject herself properly. After 6 months, IGF-I levels decreased by 63^19% (767.8^152.9 vs 299.8^162.9 mg/l, P , 0.0001, t-test); serum IGF-I levels normalized in 57%. After 12 months, IGF-I levels normalized in nine (75%) patients and were reduced by over 50% in another three (25%). The mean tumor volume remained stable during the study (1198^1234 vs 1196^1351 mm 3 , P ¼ 0.37): it did not change (^25% vs basal) in nine patients, increased by 39.4% and 40.8% in two and decreased by 30.8 -46.5% in four. The total/high-density lipoprotein (HDL):cholesterol ratio (from 4.4^1.0 to 3.7^0.6, P¼0.0012), glucose levels (from 5.6^1.2 to 4.4^1.4 mmol/l, P ¼ 0.026), insulin levels (from 12.4^6.7 to 8.1^3.0 mUl/l, P ¼ 0.0023) and homeostasis model assessment (HOMA) index (from 3.4^2.1 to 1.9^1.0, P ¼ 0.0017) decreased. Conclusions: Treatment for 12 months with pegvisomant normalized IGF-I levels, and improved cardiovascular risk parameters and insulin sensitivity in patients with acromegaly resistant to long-term, high-dose treatment with somatostatin analogs. The tolerance of treatment was good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.