BackgroundIntermittent hypoxia (IH), a model of sleep apnea, produces weight loss in animals. We hypothesized that changes in brown adipose tissue (BAT) function are involved in such phenomenon. We investigated the effect of IH, during 35 days, on body weight, brown adipose tissue wet weight (BATww) and total protein concentration (TPC) of BAT.MethodsWe exposed Balb/c mice to 35 days of IH (n = 12) or sham intermittent hypoxia (SIH; n = 12), alternating 30 seconds of progressive hypoxia to a nadir of 6%, followed by 30 seconds of normoxia. During 8 hours, the rodents underwent a total of 480 cycles of hypoxia/reoxygenation, equivalent to an apnea index of 60/hour. BAT was dissected and weighed while wet. Protein was measured using the Lowry protein assay.ResultsBody weight was significantly reduced in animals exposed to IH, at day 35, from 24.4 ± 3.3 to 20.2 ± 2.2 g (p = 0.0004), while in the SIH group it increased from 23.3 ± 3.81 to 24.1 ± 2.96 g (p = 0.23). BATww was also lower in IH than in SIH group (p = 0.00003). TPC of BAT, however, was similar in IH (204.4 ± 44.3 μg/100 μL) and SIH groups (213.2 ± 78.7 μg/100 μL; p = 0.74) and correlated neither with body weight nor with BATww. TPC appeared to be unaffected by exposure to IH also in multivariate analysis, adjusting for body weight and BATww. The correlation between body weight and BATww is significant (rho= 0.63) for the whole sample. When IH and SIH groups are tested separately, the correlations are no longer significant (rho= 0.48 and 0.05, respectively).ConclusionIH during 35 days in a mice model of sleep apnea causes weight loss, BATww reduction, and no change in TPC of BATww. The mechanisms of weight loss under IH demands further investigation.
Objective: Obstructive sleep apnea is a common disorder associated with aging and obesity. Apneas cause repeated arousals, intermittent hypoxia, and oxidative stress. Changes in glucolipidic profile occur in apnea patients, independently of obesity. Animal models of sleep apnea induce hyperglycemia. This study aims to evaluate the effect of the antioxidants melatonin and N-acetylcysteine on glucose, triglyceride, and cholesterol levels in animals exposed to intermittent hypoxia. Materials and methods: Two groups of Balb/c mice were exposed to intermittent hypoxia (n = 36) or sham intermittent hypoxia (n = 36) for 35 days. The intermittent hypoxia group underwent a total of 480 cycles of 30 seconds reducing the inspired oxygen fraction from 21% to 7 ± 1% followed by 30 seconds of normoxia, during 8 hours daily. Melatonin or N-acetylcysteine were injected intraperitonially daily from day 21 on. Results: At day 35, glucose levels were significantly higher in the intermittent hypoxia group than in the control group. The intermittent hypoxia groups receiving N-acetylcysteine and vehicle showed higher glucose levels than the group receiving melatonin. The lipid profile was not affected by intermittent hypoxia or antioxidant administration.
Conclusions:The present results suggest that melatonin prevents the well-recognized increase in glucose levels that usually follows exposure to intermittent hypoxia. Further exploration of the role of melatonin in sleep apnea is warranted. Arch Endocrinol Metab. 2015;59(1):66-70
Introduction: Caffeinated drinks are used for improve performance. Animal models represent investigational strategy that circumvents most of the drawbacks of research in humans, including motivational factors and the placebo effect. No animal model that could test whether different forms of administering caffeine affect exercise propensity was found in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.