Human cystatin C (HCC) is one of the amyloidogenic proteins to be shown to oligomerize via a three-dimensional domain swapping mechanism. This process precedes the formation of a stable dimer and proceeds particularly easily in the case of the L68Q mutant. According to the proposed mechanism, dimerization of the HCC precedes conformational changes within the beta2 and beta3 strands. In this article, we present conformational studies, using circular dichroism and MD methods, of the beta2-L1-beta3 (His43-Thr72) fragment of the HCC involved in HCC dimer formation. We also carried out studies of the beta2-L1-beta3 peptide, in which the Val57 residue was replaced by residues promoting beta-turn structure formation (Asp, Asn, or Pro). The present study established that point mutation could modify the structure of the L1 loop in the beta-hairpin peptide. Our results showed that the L1 loop in the peptide excised from human cystatin C is broader than that in cystatin C. In the HCC protein, broadening of the L1 loop together with the unfavorable L68Q mutation in the hydrophobic pocket could be a force sufficient to cause the partial unfolding and then the opening of HCC or its L68Q mutant structure for further dimerization. We presume further that the Asp57 and Asn57 mutations in the L1 loop of HCC could stabilize the closed form of HCC, whereas the Pro57 mutation could lead to the opening of the HCC structure and then to dimer/oligomer formation.
Cathepsin B is a lysosomal cysteine protease exhibiting mainly dipeptidyl carboxypeptidase activity, which decreases dramatically above pH 5.5, when the enzyme starts acting as an endopeptidase. Since the common cathepsin B assays are performed at pH 6 and do not distinguish between these activities, we synthesized a series of peptide substrates specifically designed for the carboxydipeptidase activity of cathepsin B. The amino-acid sequences of the P(5)-P(1) part of these substrates were based on the binding fragments of cystatin C and cystatin SA, the natural reversible inhibitors of papain-like cysteine protease. The sequences of the P'(1)-P'(2) dipeptide fragments of the substrates were chosen on the basis of the specificity of the S'(1)-S'(2) sites of the cathepsin B catalytic cleft. The rates of hydrolysis by cathepsin B and papain, the archetypal cysteine protease, were monitored by a continuous fluorescence assay based on internal resonance energy transfer from an Edans to a Dabcyl group. The fluorescence energy donor and acceptor were attached to the C- and the N-terminal amino-acid residues, respectively. The kinetics of hydrolysis followed the Michaelis-Menten model. Out of all the examined peptides Dabcyl-R-L-V-G-F- E(Edans) turned out to be a very good substrate for both papain and cathepsin B at both pH 6 and pH 5. The replacement of Glu by Asp turned this peptide into an exclusive substrate for cathepsin B not hydrolyzed by papain. The substitution of Phe by Nal in the original substrate caused an increase of the specificity constant for cathepsin B at pH 5, and a significant decrease at pH 6. The results of kinetic studies also suggest that Arg in position P(4) is not important for the exopeptidase activity of cathepsin B, and that introducing Glu in place of Val in position P(2) causes an increase of the substrate preference towards this activity.
Glucocorticoids (GCs) are very effective at preventing carcinogen- and tumor promoter-induced skin inflammation, hyperplasia, and mouse skin tumor formation. The effects of GCs are mediated by a well-known transcription factor, the glucocorticoid receptor (GR). GR acts via two different mechanisms: transcriptional regulation that requires DNA-binding (transactivation) and DNA binding-independent protein-protein interactions between GR and other transcription factors, such as nuclear factor kappa B (NF-κB) or activator protein 1 (AP-1; transrepression). We hypothesize that the transrepression activities of the GR are sufficient to suppress skin tumor promotion. We obtained two GCs (RU24858 and RU24782) that have dissociated downstream effects and induce only transrepression activities of the GR in a number of systems. These compounds bind the GR with high affinity and repress AP-1 and NF-κB activities while showing a lack of GR transactivation. RU24858, RU24782, or control full GCs desoximetasone (DES) and fluocinolone acetonide (FA) were applied to the dorsal skin of SENCAR mice prior to application of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), two times per week for 2 weeks. DES, FA and RU24858 reversed TPA-induced epidermal hyperplasia and proliferation, while RU24782 treatment had no effect on these markers of skin tumor promotion. All tested compounds decreased TPA-induced c-jun mRNA levels in skin. DES, FA, and RU24858, but not RU24782, were also able to reverse TPA-induced increases in the mRNA levels of COX-2 and iNOS. These findings show that RU24858 but not RU24782 reduced TPA-induced epidermal hyperplasia, proliferation, and inflammation, while both compounds reversed c-jun mRNA increases in the skin.
Human cystatin C (HCC) shows a tendency to dimerize. This process is particularly easy in the case of the L68Q HCC mutant and might lead to formation of amyloid deposits in brain arteries of young adults. Our purpose was to find ligands of monomeric HCC that can prevent its dimerization. Eleven antisense peptide ligands of monomeric HCC were designed and synthesized. The influence of these ligands on HCC dimerization was studied using gel electrophoresis and molecular modeling methods. The results suggest that all the designed peptides interact with monomeric HCC facilitating its dimerization rather than preventing it.
Glucocorticoids are very effective in preventing carcinogen- and tumor promoter-induced skin inflammation, hyperplasia, and mouse skin tumor formation when applied to skin together with a carcinogen. Their control of cellular functions is mediated by a well-known transcription factor, glucocorticoid receptor (GR). GR acts via two different mechanisms: transcriptional regulation that requires DNA-binding and protein-protein interaction between GR and other transcription factors, such as nuclear factor kappa B (NF-κB) or activator protein 1 (AP-1), which is independent of DNA binding. We hypothesize that only the transrepression activities of the GR are sufficient to suppress skin tumor development. To test our hypothesis, we have synthesized two glucocorticoids (RU24858 and RU24782) that induce only transrepression activities of the GR. These two compounds are able to bind to the GR with high affinity and repress the AP-1 and NF-κB activity while showing reduced transactivation activities in vitro. Different doses (0.001, 0.01 and 0.1 mg) of RU24858, RU24782, desoxymethasone (DES) and fluocinolone acetonide (FA) or acetone were applied to the dorsal skin of female SENCAR mice 20 min. prior to TPA application (2 μg), two times per week for two weeks. Keratinocytes proliferation rates were estimated by measuring epidermis thickness and BrdU incorporation index. Immunohistochemistry and RT-PCR techniques were also used to evaluate expression level of genes involved in inflammation and cell cycle regulation. All studied compounds did not influence keratinocytes proliferation when applied alone. Application of DES, FA and RU24858 reversed TPA induced hyperplasia, in dose-depended manner, while RU24782 treatment had no effect on epidermis thickness or the BrdU incorporation index in TPA treated skins. All tested compounds were able to decrease c-jun mRNA level both in acetone and TPA-treated skins. DES, FA and RU24858 were also able to decrease elevated by TPA mRNA level of IL-6, COX-2 and iNOS. RU24782 did not influence mRNAs levels of these genes. These findings suggest that RU24782 had no effect on TPA-induced inflammation and hyperplasia in SENCAR mice, while RU24858 was able to reduce all tested inflammation markers, having only slight effect on epidermal hyperplasia. Supported by NIH grants CA 0796065-06 and P30 CA 54174-16S1. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 2477.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.