The early detection of applications associated with TCP flows is an essential step for network security and traffic engineering. The classic way to identify flows, i.e. looking at port numbers, is not effective anymore. On the other hand, state-of-the-art techniques cannot determine the application before the end of the TCP flow. In this editorial, we propose a technique that relies on the observation of the first five packets of a TCP connection to identify the application. This result opens a range of new possibilities for online traffic classification.
The automatic detection of applications associated with network traffic is an essential step for network security and traffic engineering. Unfortunately, simple port-based classification methods are not always efficient and systematic analysis of packet payloads is too slow. Most recent research proposals use flow statistics to classify traffic flows once they are finished, which limit their applicability for online classification. In this paper, we evaluate the feasibility of application identification at the beginning of a TCP connection. Based on an analysis of packet traces collected on eight different networks, we find that it is possible to distinguish the behavior of an application from the observation of the size and the direction of the first few packets of the TCP connection. We apply three techniques to cluster TCP connections: K-Means, Gaussian Mixture Model and spectral clustering. Resulting clusters are used together with assignment and labeling heuristics to design classifiers. We evaluate these classifiers on different packet traces. Our results show that the first four packets of a TCP connection are sufficient to classify known applications with an accuracy over 90% and to identify new applications as unknown with a probability of 60%.
International audienceTraceroute is widely used, from the diagnosis of network problems to the assemblage of internet maps. However, there are a few serious problems with this tool, in particu-lar due to the presence of load balancing routers in the net-work. This paper describes a number of anomalies that arise in nearly all traceroute-based measurements. We categorize them as "loops", "cycles", and "diamonds". We provide a new publicly-available traceroute, called Paris traceroute, which controls packet header contents to obtain a more pre-cise picture of the actual routes that packets follow. This new tool allows us to find conclusive explanations for some of the anomalies, and to suggest possible causes for others
We present the first study of network access link performance measured directly from home gateway devices. Policymakers, ISPs, and users are increasingly interested in studying the performance of Internet access links. Because of many confounding factors in a home network or on end hosts, however, thoroughly understanding access network performance requires deploying measurement infrastructure in users' homes as gateway devices. In conjunction with the Federal Communication Commission's study of broadband Internet access in the United States, we study the throughput and latency of network access links using longitudinal measurements from nearly 4,000 gateway devices across 8 ISPs from a deployment of over 4,200 devices. We study the performance users achieve and how various factors ranging from the user's choice of modem to the ISP's traffic shaping policies can affect performance. Our study yields many important findings about the characteristics of existing access networks. Our findings also provide insights into the ways that access network performance should be measured and presented to users, which can help inform ongoing broader efforts to benchmark the performance of access networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.