We concluded that 2% L: -glutamine had neuroprotective effects directly on myenteric neurons and indirectly through glial cells, which had gliatrophic effects.
The effect of vitamin E (1 g/kg body weight) supplementation on myosin-V and neuronal nitric oxide synthase (nNOS) immunoreactive myenteric neurons from the ileum of diabetic rats was investigated in the present study. Forty animals were divided into the following groups: normoglycemics (N), normoglycemics treated with vitamin E (NE), diabetics (D), and diabetics treated with vitamin E (DE). Quantitative and morphometric analyses were performed. The area of the tertiary plexus was also determined. Diabetes produced a 24% reduction in the number of myosin-V neurons in group D compared with group N, an effect that was accompanied by an increase in the tertiary plexus area (P < 0.05). Neuronal density was 27% higher in group NE than group N (P < 0.05). Nitrergic neuronal density was not altered as a consequence of either diabetes or vitamin E treatment. Myosin-V and nNOS immunoreactive neuronal cell body area increased significantly in group NE. The area of myosin-V and nNOS myenteric neurons also increased in group D. Vitamin E treatment (group DE) increased only the size of nitrergic neurons. The present results suggest that vitamin E elicited a neuroprotective and neurotrophic effect on the natural aging process, but with regard to diabetes, vitamin E supplementation exerted a neurotrophic effect only on nitrergic neurons.
The purpose of this work was to study the area of the varicosities of nerve fibers of myenteric neurons immunoreactive to vasoactive intestinal peptide (VIP-IR) and of the cell bodies of VIP-IR submucosal neurons of the jejunum of diabetic rats supplemented with 2% L-glutamine. Twenty male rats were divided into the following groups: normoglycemic (N), normoglycemic supplemented with L-glutamine (NG), diabetic (D) and diabetic supplemented with L-glutamine (DG). Whole-mounts of the muscle tunica and the submucosal layer were subjected to the immunohistochemical technique for neurotransmitter VIP identification. Morphometric analyses were carried out in 500 VIP-IR cell bodies of submucosal neurons and 2000 VIP-IR varicosities from each group. L-Glutamine supplementation to the normoglycemic animals caused an increase in the areas of the cell bodies (8.49%) and varicosities (21.3%) relative to the controls (P < 0.05). On the other hand, there was a decrease in the areas of the cell bodies (4.55%) and varicosities (28.9%) of group DG compared to those of group D (P < 0.05). It is concluded that L-glutamine supplementation was positive both to normoglycemic and diabetic animals.
We studied the neuronal density and size of myenteric neurons and the epithelial cell proliferation and crypt depth of the proximal colon in diabetic Wistar rats after supplementing them with L-glutamine (1%). The animals were divided into five groups: untreated normoglycemic (UN), L-glutamine-treated normoglycemic (NG), untreated diabetic (UD), and L-glutamine-treated diabetics 4 days (DG4) and 45 days (DG45) days after the onset of diabetes. We observed a reduction of 52.7% and 50.44% in the neuronal density of the proximal colon of the UD group compared to the UN and NG groups, respectively (P<0.05). The neuronal density found for the DG4 (32.8%) and DG45 (28.6%) groups was higher than that of the UD group (P>0.05). There were no significant differences (P>0.05) when the data relative to the area of the myenteric neuron cell bodies, metaphasic index, and crypt depth in the proximal colon were compared among experimental groups.
We investigated the effect of ascorbic acid (AA) supplementation on the NADPH-diaphorase (NADPHd) and myosin-V myenteric neurons in the ileum of rats, after 4 months of treatment. Two groups were compared, i.e. controls rats (C) and AA-treated rats (CA). Myosin-V immunohistochemistry and NADPHd histochemistry were employed. We investigated the areas of 500 cell bodies of myosin-V neurons and of 500 NADPHd stained neurons from all groups. The quantitative analysis was performed using an area of 8.96 mm2 from each ileum. There was an increase of 21.9% in the myosin-V immunoreactive myenteric neurons (P > 0.05) and of 22.5% in the NADPHd in group CA when compared with C (P < 0.05). There were no significant differences when we compared the area of myosin-V stained neurons between groups C and CA. However, we verified an area reduction of 7.5% in NADPHd neurons when comparing group C to group CA (P < 0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.