A possible way to avoid dose-limiting side effects of platinum anticancer drugs is to employ light to cause photochemical changes in nontoxic platinum prodrugs that release active antitumor agents. This strategy could be used in the treatment of localized cancers accessible to irradiation (e.g., bladder, lung, esophagus, and skin). We report here that nontoxic photolabile diam(m)ino platinum(IV) diazido complexes inhibit the growth of human bladder cancer cells upon irradiation with light, and are non-crossresistant to cisplatin. Their rate of photolysis closely parallels that of DNA platination, indicating that the photolysis products interact directly, and rapidly, with DNA. Photoactivation results in a dramatic shrinking of the cancer cells, loss of adhesion, packing of nuclear material, and eventual disintegration of their nuclei, indicating a different mechanism of action from cisplatin.
The aim of this work was 2-fold: (i) to identify correlations between the activities of pairs of 19 anti-tumor agents in a mini-panel of 14 human cancer cell lines of diverse origins with the goal of validating the panel, and (ii) to look for correlations between the activities of 19 standard anti-tumor agents and the intracellular concentrations of glutathione (GSH). Validation with analogous data from the National Cancer Institute (NCI) Developmental Therapeutics Program was made. The cell growth inhibition potencies of the anti-tumor agents [cisplatin, carboplatin, oxaliplatin, DACH-Pt, melphalan, chlorambucil, thiotepa, busulfan, doxorubicin, etoposide, camptothecin, vinblastine, podophyllotoxin, colchicine, taxol, hydroxyurea, methotrexate, 5-azacytidine and 5-fluorouracil (5-FU)] were estimated in 14 cancer cell lines by their GI50 values. An enzymatic assay based on the method of Tietze was employed to measure intracellular total GSH concentrations. The Delta method was used to compare pairs of anti-tumor agents; similarities and differences in activity profiles (mean graphs) were evaluated by regression analysis. Most, but not all, of the correlations could be explained based on similarities in the mechanisms of action and many correlations/non-correlations were also observed in the NCI data. Some correlations were unexpected however, and not seen in the NCI data. For example, strong positive correlations (P < 0.01) were found between the GI50 values of melphalan/chlorambucil and the anti-mitotic agents. Similarly unexpected, a strong positive correlation was observed between methotrexate and cisplatin (P < 0.01). Interestingly, moderate to strong negative correlations (P < 0.01-0.05) were found between the GI50 values of 5-FU and the anti-mitotic agents/melphalan/chlorambucil. Significant positive correlations between intracellular GSH concentrations and GI50 values were found only for thiotepa (P < 0.05) and doxorubicin (P < 0.01). Data from a NCI panel of 34 cancer cell lines showed no correlations between GSH levels and the GI50 values of the same 19 compounds. In conclusion, a panel of 14 human cancer cell lines of diverse origin was used to identify similarities and differences in the activities of standard anti-tumor agents. The level of significance was stronger with the 34 cell lines of the NCI, however. Our results indicate that GSH intracellular concentrations correlate with resistance only with doxorubicin and thiotepa in these cell lines.
The present article reports on the platination of the human telomeric G-quadruplex by three Pt-terpyridine complexes. It is shown that extension of the aromatic surface of the terpyridine moiety surrounding the platinum atom influences both the binding affinity and the platination activity. Remarkably, the most strongly bound complex Pt-ttpy coordinates exclusively the adenine nucleobases present in the loop of the G-quadruplex. This exclusive single-site platination reflects the interaction of the compound with both the G-tetrad and the loop residues. In addition Pt-ttpy showed promising antiproliferative activity on a panel of cancer cell lines in a parallel study using cisplatin derivatives currently in clinical use.
Four platinum(II) metallointercalating complexes of 1,10-phenanthroline (phen) with the chiral ancillary ligands trans-R,R- and trans-S,S-1,2-diaminocyclohexane (R,R- and S,S-dach, respectively), and N,N'-dimethyl-R,R- and N,N'-dimethyl-S,S-1,2-diaminocyclohexane (Me(2)-R,R-dach and Me(2)-S,S-dach, respectively) have been synthesised and characterised. The crystal structure of [Pt(Me(2)-S,S-dach)(phen)](ClO(4))(2)1.5 H(2)O (C(20)H(26)Cl(2)N(4)O(9.5)Pt) has been determined; orthorhombic, space group P2(1)2(1)2(1)(No. 19), a=23.194(8), b=25.131(9), c=8.522(3) A. In vitro cytotoxic assays (IC(50)) in the human bladder cancer cell line 5637 and in the murine leukemia L1210 cell line revealed that [Pt(S,S-dach)(phen)](ClO(4))(2) (0.091 and 0.13 microM, respectively) and [Pt(R,R-dach)(phen)](ClO(4))(2) (0.54 and 1.50 microM, respectively) were more cytotoxic than cisplatin (0.31 and 0.50 microM, respectively) and considerably more cytotoxic than their methylated counterparts, [Pt(Me(2)-R,R-dach)(phen)](ClO(4))(2) and [Pt(Me(2)-S,S-dach)(phen)](ClO(4))(2) (both>23 microM). Chiral discrimination for [Pt(S,S-dach)(phen)](ClO(4))(2) over its R,R-enantiomer was observed in all 13 cancer cell lines investigated. Moreover, [Pt(S,S-dach)(phen)](ClO(4))(2) was more active than cisplatin in all cell lines tested and shows only partial cross-resistance to cisplatin in two cisplatin resistant cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.