STARD5 is a cytosolic sterol transport protein that is predominantly expressed in liver and kidney. This study provides the first report on STARD5 protein expression and distribution in mouse kidney. Immunohistochemical analysis of C57BL/6J mouse kidney sections revealed that STARD5 is expressed in tubular cells within the renal cortex and medullar regions with no detectable staining within the glomeruli. Within the epithelial cells of proximal renal tubules, STARD5 is present in the cytoplasm with high staining intensity along the apical brush-border membrane. Transmission electron microscopy of a renal proximal tubule revealed STARD5 is abundant at the basal domain of the microvilli and localizes mainly in the rough endoplasmic reticulum (ER) with undetectable staining in the Golgi apparatus and mitochondria. Confocal microscopy of STARD5 distribution in HK-2 human proximal tubule cells showed a diffuse punctuate pattern that is distinct from the early endosome marker EEA1 but similar to the ER membrane marker GRP78. Treatment of HK-2 cells with inducers of ER stress increased STARD5 mRNA expression and resulted in redistribution of STARD5 protein to the perinuclear and cell periphery regions. Since recent reports show elevated ER stress response gene expression and increased lipid levels in kidneys from diabetic rodent models, we tested STARD5 and cholesterol levels in kidneys from the OVE26 type I diabetic mouse model. Stard5 mRNA and protein levels are increased 2.8- and 1.5-fold, respectively, in OVE26 diabetic kidneys relative to FVB control kidneys. Renal free cholesterol levels are 44% elevated in the OVE26 mice. Together, our data support STARD5 functioning in kidney, specifically within proximal tubule cells, and suggest a role in ER-associated cholesterol transport.
Transcriptional activation of the steroidogenic acute regulatory protein (STAR) gene is a critical component in the angiotensin II (Ang II)-dependent increase in aldosterone biosynthesis in the adrenal gland. The purpose of this study was to define the molecular mechanisms that mediate the Ang II-dependent increase in STARD1 gene (STAR) expression in H295R human adrenocortical cells. Mutational analysis of the STAR proximal promoter revealed that a nonconsensus cAMP-responsive element located at -78 bp relative to the transcription start site (-78CRE) is required for the Ang II-stimulated STAR reporter gene activity. DNA immunoaffinity chromatography identified a 25-kDa cAMP-responsive element modulator isoform and Yin Yang 1 (YY1) as -78CRE DNA-binding proteins, and Ang II treatment of H295R cells increased expression of that 25-kDa CREM isoform. Small interfering RNA silencing of CREM and YY1 attenuated the Ang II-dependent increases in STAR reporter gene activity and STAR mRNA levels. Conversely, overexpression of CREM and YY1 in COS-1 cells resulted in transactivation of STAR reporter gene activity. Chromatin immunoprecipitation analysis demonstrated recruitment of CREM and YY1 to the STAR promoter along with increased association of the coactivator cAMP response element-binding protein-binding protein (CBP) and increased phosphorylated RNA polymerase II after Ang II treatment. Together our data reveal that the Ang II-stimulated increase in STAR expression in H295R cells requires 25 kDa CREM and YY1. The recruitment of these transcription factors to the STAR proximal promoter results in association of CBP and activation of RNA polymerase II leading to increased STAR transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.