Hyperhomocysteinaemia has been identified as a risk factor for cerebrovascular, peripheral vascular, and coronary heart disease. 1-4 Elevated levels of plasma homocysteine can result from genetic or nutrient-related disturbances in the trans-sulphuration or re-methylation pathways for homocysteine metabolism. 1,5-7 5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, the predominant circulatory form of folate and carbon donor for the re-methylation of homocysteine to methionine. Reduced MTHFR activity with a thermolabile enzyme has been reported in patients with coronary and peripheral artery diseases. 6 We have identified a common mutation in MTHFR which alters a highly-conserved amino acid; the substitution occurs at a frequency of approximately 38% of unselected chromosomes. The mutation in the heterozygous or homozygous state correlates with reduced enzyme activity and increased thermolability in lymphocyte extracts; in vitro expression of a mutagenized cDNA containing the mutation confirms its effect on thermolability of MTHFR. Finally, individuals homozygous for the mutation have significantly elevated plasma homocysteine levels. This mutation in MTHFR may represent an important genetic risk factor in vascular disease.
Methylenetetrahydrofolate reductase (MTHFR) catalyses the reduction of methylenetetrahydrofolate to methyltetrahydrofolate, a cofactor for homocysteine methylation to methionine. MTHFR deficiency, an autosomal recessive disorder, results in homocysteinemia. Using degenerate oligonucleotides based on porcine peptide sequence data, we isolated a 90-bp cDNA by PCR from pig liver RNA. This cDNA was used to isolate a human cDNA, the predicted amino acid sequence of which shows strong homology to porcine MTHFR and to bacterial metF genes. The human gene has been localized to chromosome 1p36.3. Two mutations were identified in MTHFR-deficient patients: a missense mutation (Arg to Gln), in a residue conserved in bacterial enzymes, and a nonsense mutation (Arg to Ter).
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. A human cDNA for MTHFR, 2.2 kb in length, has been expressed and shown to result in a catalytically active enzyme of approximately 70 kDa. Fifteen mutations have been identified in the MTHFR gene: 14 rare mutations associated with severe enzymatic deficiency and 1 common variant associated with a milder deficiency. The common polymorphism has been implicated in three multifactorial diseases: occlusive vascular disease, neural tube defects, and colon cancer. The human gene has been mapped to chromosomal region 1p36.3 while the mouse gene has been localized to distal Chromosome (Chr) 4. Here we report the isolation and characterization of the human and mouse genes for MTHFR. A human genomic clone (17 kb) was found to contain the entire cDNA sequence of 2.2 kb; there were 11 exons ranging in size from 102 bp to 432 bp. Intron sizes ranged from 250 bp to 1.5 kb with one exception of 4.2 kb. The mouse genomic clones (19 kb) start 7 kb 5' exon 1 and extend to the end of the coding sequence. The mouse amino acid sequence is approximately 90% identical to the corresponding human sequence. The exon sizes, locations of intronic boundaries, and intron sizes are also quite similar between the two species. The availability of human genomic clones has been useful in designing primers for exon amplification and mutation detection. The mouse genomic clones will be helpful in designing constructs for gene targeting and generation of mouse models for MTHFR deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.