Photoemission from atoms is assumed to occur instantly in response to incident radiation and provides the basis for setting the zero of time in clocking atomic-scale electron motion. We used attosecond metrology to reveal a delay of 21 +/- 5 attoseconds in the emission of electrons liberated from the 2p orbitals of neon atoms with respect to those released from the 2s orbital by the same 100-electron volt light pulse. Small differences in the timing of photoemission from different quantum states provide a probe for modeling many-electron dynamics. Theoretical models refined with the help of attosecond timing metrology may provide insight into electron correlations and allow the setting of the zero of time in atomic-scale chronoscopy with a precision of a few attoseconds.
Recent advances in the generation of well characterized sub-femtosecond laser pulses have opened up unpredicted opportunities for the real-time observation of ultrafast electronic dynamics in matter. Such attosecond chronoscopy allows a novel look at a wide range of fundamental photophysical and photochemical processes in the time domain, including Auger and autoionization processes, photoemission from atoms, molecules, and surfaces, complementing conventional energy-domain spectroscopy. Attosecond chronoscopy raises fundamental conceptual and theoretical questions as which novel information becomes accessible and which dynamical processes can be controlled and steered. These questions are currently a matter of lively debate which we address in this review. We will focus on one prototypical case, the chronoscopy of the photoelectric effect by attosecond streaking. Is photoionization instantaneous or is there a finite response time of the electronic wavefunction to the photoabsorption event? Answers to this question turn out to be far more complex and multi-faceted than initially thought. They touch upon fundamental issues of time and time delay as observables in quantum theory. We review recent progress of our understanding of time-resolved photoemission from atoms, molecules, and solids. We will highlight the unresolved and open questions and we point to future directions aiming at the observation and control of electronic motion in more complex nanoscale structures and in condensed matter.
We present accurate time-dependent ab initio calculations on fully differential and total integrated (generalized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40 to 54 eV. Our computational method is based on the solution of the time-dependent Schroedinger equation and subsequent projection of the wave function onto Coulomb waves. We compare our results with other recent calculations and discuss the emerging similarities and differences. We investigate the role of electronic correlation in the representation of the two-electron continuum states, which are used to extract the ionization yields from the fully correlated final wave function. In addition, we study the influence of the pulse length and shape on the cross sections in time-dependent calculations and address convergence issues.Comment: 14 pages, 10 figures; final version (acknowledgements and reference added, typos fixed
Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ("time shift") due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schrödinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He + exceeding 20 as for a wide range of IR intensities and XUV energies.
thus proliferate sub-attosecond absolute timing precision across ultrafast spectroscopy. MethodsMethods, including statements of data availability and any associated accession codes and references, are available in the online version of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.