This paper describes research relating to the major recall of pet food that occurred in Spring 2007 in North America. Clinical observations of acute renal failure in cats and dogs were associated with consumption of wet pet food produced by a contract manufacturer producing for a large number of companies. The affected lots of food had been formulated with wheat gluten originating from China. Pet food and gluten were analyzed for contaminants using several configurations of high-performance liquid chromatography (HPLC) and mass spectrometry (MS), which revealed a number of simple triazine compounds, principally melamine and cyanuric acid, with lower concentrations of ammeline, ammelide, ureidomelamine, and N-methylmelamine. Melamine and cyanuric acid, have been tested and do not produce acute renal toxicity. Some of the triazines have poor solubility, as does the compound melamine cyanurate. Pathological evaluation of cats and dogs that had died from the acute renal failure indicated the presence of crystals in kidney tubules. We hypothesized that these crystals were composed of the poorly soluble triazines, a melamine-cyanuric acid complex, or a combination. Sprague dawley rats were given up to 100 mg/kg ammeline or ammelide alone, a mixture of melamine and cyanuric acid (400/400 mg/kg/day), or a mixture of all four compounds (400 mg/kg/day melamine, 40 mg/kg/day of the others). Neither ammeline nor ammelide alone produced any renal effects, but the mixtures produced significant renal damage and crystals in nephrons. HPLC-MS/MS confirmed the presence of melamine and cyanuric acid in the kidney. Infrared microspectroscopy on individual crystals from rat or cat (donated material from a veterinary clinic) kidneys confirmed that they were melamine-cyanuric acid cocrystals. Crystals from contaminated gluten produced comparable spectra. These results establish the causal link between the contaminated gluten and the adverse effects and provide a mechanistic explanation for how two apparently innocuous compounds could have adverse effects in combination, that is, by forming an insoluble precipitate in renal tubules leading to progressive tubular blockage and degeneration.
Pet and food animal (hogs, chicken, and fish) feeds were recently found to be contaminated with melamine (MEL). A quantitative and confirmatory method is presented to determine MEL residues in edible tissues from fish fed this contaminant. Edible tissues were extracted with acidic acetonitrile, defatted with dichloromethane, and cleaned up using mixed-mode cation exchange solid-phase extraction cartridges. Extracts were analyzed by liquid chromatography with tandem mass spectrometry with hydrophilic interaction chromatography and electrospray ionization in positive ion mode. Fish and shrimp tissues were fortified with 10-500 microg/kg (ppb) of MEL with an average recovery of 63.8% (21.5% relative standard deviation, n = 121). Incurred fish tissues were generated by feeding fish up to 400 mg/kg of MEL or a combination of MEL and the related triazine cyanuric acid (CYA). MEL and CYA are known to form an insoluble complex in the kidneys, which may lead to renal failure. Fifty-five treated catfish, trout, tilapia, and salmon were analyzed after withdrawal times of 1-14 days. MEL residues were found in edible tissues from all of the fish with concentrations ranging from 0.011 to 210 mg/kg (ppm). Incurred shrimp and a survey of market seafood products were also analyzed as part of this study.
The fish kidney provides a unique model for investigating renal injury, repair, and development. Like mammalian kidneys, fish kidneys have the remarkable ability to repair injured nephrons, designated renal regeneration. This response is marked by a recovery from acute renal failure by replacing the injured cells with new epithelial cells, restoring tubule integrity. In addition, fish have the ability to respond to renal injury by de novo nephron neogenesis. This response occurs in multiple fish species including goldfish, zebrafish, catfish, trout, tilapia, and the aglomerular toadfish. New nephrons develop in the weeks after the initial injury. This nephrogenic response can be induced in adult fish, providing a more abundant source of developing renal tissue compared with fetal mammalian kidneys. Investigating the roles played by different parts of the nephron during development and repair can be facilitated using fish models with differing renal anatomy, such as aglomerular fish. The fish nephron neogenesis model may also help to identify novel genes involved in nephrogenesis, information that could eventually be used to develop alternative renal replacement therapies.
The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), in collaboration with the Food Emergency Response Network (FERN) and its Microbiology Cooperative Agreement Program (MCAP) laboratories, conducted a study to evaluate the prevalence of selected microbial organisms in various types of pet foods. The goal of this blinded study was to help the Center for Veterinary Medicine prioritize potential future pet foodtesting efforts. The study also increased the FERN laboratories' screening capabilities for foodborne pathogens in animal feed matrices, since such pathogens may also be a significant health risk to consumers who come into contact with pet foods. Six U.S. Food and Drug Administration FERN MCAP laboratories analyzed approximately 1056 samples over 2 years. Laboratories tested for Salmonella, Listeria, Escherichia coli O157:H7 enterohemorrhagic E. coli, and Shiga toxin-producing strains of E. coli (STEC). Dry and semimoist dog and cat foods purchased from local stores were tested during Phase 1. Raw dog and cat foods, exotic animal feed, and jerky-type treats purchased through the Internet were tested in Phase 2. Of the 480 dry and semimoist samples, only 2 tested positive: 1 for Salmonella and 1 for Listeria greyii. However, of the 576 samples analyzed during Phase 2, 66 samples were positive for Listeria (32 of those were Listeria monocytogenes) and 15 samples positive for Salmonella. These pathogens were isolated from raw foods and jerky-type treats, not the exotic animal dry feeds. This study showed that raw pet foods may harbor food safety pathogens, such as Listeria monocytogenes and Salmonella. Consumers should handle these products carefully, being mindful of the potential risks to human and animal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.